Bepis_9B / README.md
Nitral
Adding Evaluation Results (#2)
106150e verified
metadata
language:
  - en
license: other
library_name: transformers
tags:
  - mergekit
  - merge
base_model: []
model-index:
  - name: Bepis_9B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 62.54
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 80.12
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 62.84
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 53.3
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 76.48
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 39.12
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
          name: Open LLM Leaderboard

Bepis

image/jpeg

A new 9B model from jeiku. This one is smart, proficient at markdown, knows when to stop talking, and is quite soulful. The merge was an equal 3 way split between https://huggingface.co/ChaoticNeutrals/Prodigy_7B, https://huggingface.co/Test157t/Prima-LelantaclesV6-7b, and https://huggingface.co/cgato/Thespis-CurtainCall-7b-v0.2.1

If there's any 7B to 11B merge or finetune you'd like to see, feel free to leave a message.

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: primathespis
        layer_range: [0, 20]
  - sources:
      - model: prodigalthespis
        layer_range: [12, 32]
merge_method: passthrough
dtype: float16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 62.40
AI2 Reasoning Challenge (25-Shot) 62.54
HellaSwag (10-Shot) 80.12
MMLU (5-Shot) 62.84
TruthfulQA (0-shot) 53.30
Winogrande (5-shot) 76.48
GSM8k (5-shot) 39.12