File size: 4,192 Bytes
22d9ec7 106150e 22d9ec7 106150e 22d9ec7 68e796a e115d9c 22d9ec7 68e796a 22d9ec7 68e796a 22d9ec7 106150e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
language:
- en
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model: []
model-index:
- name: Bepis_9B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.54
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 80.12
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.84
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.3
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B
name: Open LLM Leaderboard
---
# Bepis
![image/jpeg](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F626dfb8786671a29c715f8a9%2FH0_oJhrIEGBIwogB77p5w.jpeg%3C%2Fspan%3E)
A new 9B model from jeiku. This one is smart, proficient at markdown, knows when to stop talking, and is quite soulful. The merge was an equal 3 way split between https://huggingface.co/ChaoticNeutrals/Prodigy_7B, https://huggingface.co/Test157t/Prima-LelantaclesV6-7b, and https://huggingface.co/cgato/Thespis-CurtainCall-7b-v0.2.1
If there's any 7B to 11B merge or finetune you'd like to see, feel free to leave a message.
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: primathespis
layer_range: [0, 20]
- sources:
- model: prodigalthespis
layer_range: [12, 32]
merge_method: passthrough
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ChaoticNeutrals__Bepis_9B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |62.40|
|AI2 Reasoning Challenge (25-Shot)|62.54|
|HellaSwag (10-Shot) |80.12|
|MMLU (5-Shot) |62.84|
|TruthfulQA (0-shot) |53.30|
|Winogrande (5-shot) |76.48|
|GSM8k (5-shot) |39.12|
|