metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-85-fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9090909090909091
deit-base-distilled-patch16-224-85-fold5
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3071
- Accuracy: 0.9091
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 1.1685 | 0.3182 |
No log | 2.0 | 4 | 0.7295 | 0.4545 |
No log | 3.0 | 6 | 0.6641 | 0.7045 |
No log | 4.0 | 8 | 0.7703 | 0.7045 |
0.7885 | 5.0 | 10 | 0.6750 | 0.7045 |
0.7885 | 6.0 | 12 | 0.6446 | 0.7045 |
0.7885 | 7.0 | 14 | 0.6919 | 0.7045 |
0.7885 | 8.0 | 16 | 0.6489 | 0.7045 |
0.7885 | 9.0 | 18 | 0.5245 | 0.7273 |
0.4488 | 10.0 | 20 | 0.8494 | 0.7045 |
0.4488 | 11.0 | 22 | 0.9086 | 0.6818 |
0.4488 | 12.0 | 24 | 0.5250 | 0.75 |
0.4488 | 13.0 | 26 | 0.5179 | 0.7727 |
0.4488 | 14.0 | 28 | 0.4423 | 0.7727 |
0.3387 | 15.0 | 30 | 0.5114 | 0.7273 |
0.3387 | 16.0 | 32 | 0.5048 | 0.75 |
0.3387 | 17.0 | 34 | 0.4997 | 0.7045 |
0.3387 | 18.0 | 36 | 0.4776 | 0.7045 |
0.3387 | 19.0 | 38 | 0.4138 | 0.7955 |
0.24 | 20.0 | 40 | 0.3220 | 0.8864 |
0.24 | 21.0 | 42 | 0.3363 | 0.8409 |
0.24 | 22.0 | 44 | 0.2958 | 0.8636 |
0.24 | 23.0 | 46 | 0.3098 | 0.8636 |
0.24 | 24.0 | 48 | 0.4030 | 0.8636 |
0.1524 | 25.0 | 50 | 0.3094 | 0.8636 |
0.1524 | 26.0 | 52 | 0.2721 | 0.8864 |
0.1524 | 27.0 | 54 | 0.3363 | 0.8636 |
0.1524 | 28.0 | 56 | 0.2731 | 0.8636 |
0.1524 | 29.0 | 58 | 0.5660 | 0.7955 |
0.1646 | 30.0 | 60 | 0.4949 | 0.8409 |
0.1646 | 31.0 | 62 | 0.4087 | 0.7727 |
0.1646 | 32.0 | 64 | 0.4467 | 0.8409 |
0.1646 | 33.0 | 66 | 0.4130 | 0.8182 |
0.1646 | 34.0 | 68 | 0.3727 | 0.8409 |
0.136 | 35.0 | 70 | 0.5894 | 0.7727 |
0.136 | 36.0 | 72 | 0.9462 | 0.75 |
0.136 | 37.0 | 74 | 0.5926 | 0.7273 |
0.136 | 38.0 | 76 | 0.3138 | 0.8864 |
0.136 | 39.0 | 78 | 0.4173 | 0.8864 |
0.163 | 40.0 | 80 | 0.3154 | 0.8636 |
0.163 | 41.0 | 82 | 0.3235 | 0.8636 |
0.163 | 42.0 | 84 | 0.3902 | 0.8182 |
0.163 | 43.0 | 86 | 0.3699 | 0.7955 |
0.163 | 44.0 | 88 | 0.4311 | 0.8182 |
0.1018 | 45.0 | 90 | 0.3071 | 0.9091 |
0.1018 | 46.0 | 92 | 0.2849 | 0.9091 |
0.1018 | 47.0 | 94 | 0.3226 | 0.8409 |
0.1018 | 48.0 | 96 | 0.2967 | 0.8409 |
0.1018 | 49.0 | 98 | 0.2936 | 0.8636 |
0.0957 | 50.0 | 100 | 0.2737 | 0.8864 |
0.0957 | 51.0 | 102 | 0.2845 | 0.8864 |
0.0957 | 52.0 | 104 | 0.3300 | 0.8409 |
0.0957 | 53.0 | 106 | 0.4029 | 0.8409 |
0.0957 | 54.0 | 108 | 0.4279 | 0.8182 |
0.1036 | 55.0 | 110 | 0.3900 | 0.8182 |
0.1036 | 56.0 | 112 | 0.4038 | 0.8636 |
0.1036 | 57.0 | 114 | 0.3569 | 0.8409 |
0.1036 | 58.0 | 116 | 0.5611 | 0.8182 |
0.1036 | 59.0 | 118 | 0.6900 | 0.8182 |
0.1048 | 60.0 | 120 | 0.5679 | 0.8182 |
0.1048 | 61.0 | 122 | 0.4567 | 0.8182 |
0.1048 | 62.0 | 124 | 0.3815 | 0.7955 |
0.1048 | 63.0 | 126 | 0.3546 | 0.7955 |
0.1048 | 64.0 | 128 | 0.3654 | 0.7955 |
0.0928 | 65.0 | 130 | 0.3337 | 0.8864 |
0.0928 | 66.0 | 132 | 0.4161 | 0.8409 |
0.0928 | 67.0 | 134 | 0.3615 | 0.8409 |
0.0928 | 68.0 | 136 | 0.4061 | 0.8182 |
0.0928 | 69.0 | 138 | 0.4191 | 0.8182 |
0.1091 | 70.0 | 140 | 0.3978 | 0.7955 |
0.1091 | 71.0 | 142 | 0.5168 | 0.75 |
0.1091 | 72.0 | 144 | 0.5268 | 0.75 |
0.1091 | 73.0 | 146 | 0.5667 | 0.7955 |
0.1091 | 74.0 | 148 | 0.5396 | 0.7727 |
0.1009 | 75.0 | 150 | 0.4807 | 0.75 |
0.1009 | 76.0 | 152 | 0.3957 | 0.8182 |
0.1009 | 77.0 | 154 | 0.3519 | 0.8636 |
0.1009 | 78.0 | 156 | 0.3654 | 0.8636 |
0.1009 | 79.0 | 158 | 0.3577 | 0.8409 |
0.0836 | 80.0 | 160 | 0.3216 | 0.8636 |
0.0836 | 81.0 | 162 | 0.3132 | 0.8409 |
0.0836 | 82.0 | 164 | 0.3003 | 0.8636 |
0.0836 | 83.0 | 166 | 0.3024 | 0.8636 |
0.0836 | 84.0 | 168 | 0.3214 | 0.8409 |
0.0928 | 85.0 | 170 | 0.3306 | 0.8182 |
0.0928 | 86.0 | 172 | 0.3284 | 0.8409 |
0.0928 | 87.0 | 174 | 0.3272 | 0.8182 |
0.0928 | 88.0 | 176 | 0.3261 | 0.8182 |
0.0928 | 89.0 | 178 | 0.3099 | 0.8409 |
0.0915 | 90.0 | 180 | 0.2928 | 0.8409 |
0.0915 | 91.0 | 182 | 0.2848 | 0.8409 |
0.0915 | 92.0 | 184 | 0.2827 | 0.8409 |
0.0915 | 93.0 | 186 | 0.2885 | 0.8636 |
0.0915 | 94.0 | 188 | 0.3084 | 0.8864 |
0.0775 | 95.0 | 190 | 0.3321 | 0.8409 |
0.0775 | 96.0 | 192 | 0.3358 | 0.8636 |
0.0775 | 97.0 | 194 | 0.3221 | 0.8409 |
0.0775 | 98.0 | 196 | 0.3096 | 0.8636 |
0.0775 | 99.0 | 198 | 0.3007 | 0.8864 |
0.091 | 100.0 | 200 | 0.2976 | 0.8864 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1