deit-base-distilled-patch16-224-85-fold5

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3071
  • Accuracy: 0.9091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 1.1685 0.3182
No log 2.0 4 0.7295 0.4545
No log 3.0 6 0.6641 0.7045
No log 4.0 8 0.7703 0.7045
0.7885 5.0 10 0.6750 0.7045
0.7885 6.0 12 0.6446 0.7045
0.7885 7.0 14 0.6919 0.7045
0.7885 8.0 16 0.6489 0.7045
0.7885 9.0 18 0.5245 0.7273
0.4488 10.0 20 0.8494 0.7045
0.4488 11.0 22 0.9086 0.6818
0.4488 12.0 24 0.5250 0.75
0.4488 13.0 26 0.5179 0.7727
0.4488 14.0 28 0.4423 0.7727
0.3387 15.0 30 0.5114 0.7273
0.3387 16.0 32 0.5048 0.75
0.3387 17.0 34 0.4997 0.7045
0.3387 18.0 36 0.4776 0.7045
0.3387 19.0 38 0.4138 0.7955
0.24 20.0 40 0.3220 0.8864
0.24 21.0 42 0.3363 0.8409
0.24 22.0 44 0.2958 0.8636
0.24 23.0 46 0.3098 0.8636
0.24 24.0 48 0.4030 0.8636
0.1524 25.0 50 0.3094 0.8636
0.1524 26.0 52 0.2721 0.8864
0.1524 27.0 54 0.3363 0.8636
0.1524 28.0 56 0.2731 0.8636
0.1524 29.0 58 0.5660 0.7955
0.1646 30.0 60 0.4949 0.8409
0.1646 31.0 62 0.4087 0.7727
0.1646 32.0 64 0.4467 0.8409
0.1646 33.0 66 0.4130 0.8182
0.1646 34.0 68 0.3727 0.8409
0.136 35.0 70 0.5894 0.7727
0.136 36.0 72 0.9462 0.75
0.136 37.0 74 0.5926 0.7273
0.136 38.0 76 0.3138 0.8864
0.136 39.0 78 0.4173 0.8864
0.163 40.0 80 0.3154 0.8636
0.163 41.0 82 0.3235 0.8636
0.163 42.0 84 0.3902 0.8182
0.163 43.0 86 0.3699 0.7955
0.163 44.0 88 0.4311 0.8182
0.1018 45.0 90 0.3071 0.9091
0.1018 46.0 92 0.2849 0.9091
0.1018 47.0 94 0.3226 0.8409
0.1018 48.0 96 0.2967 0.8409
0.1018 49.0 98 0.2936 0.8636
0.0957 50.0 100 0.2737 0.8864
0.0957 51.0 102 0.2845 0.8864
0.0957 52.0 104 0.3300 0.8409
0.0957 53.0 106 0.4029 0.8409
0.0957 54.0 108 0.4279 0.8182
0.1036 55.0 110 0.3900 0.8182
0.1036 56.0 112 0.4038 0.8636
0.1036 57.0 114 0.3569 0.8409
0.1036 58.0 116 0.5611 0.8182
0.1036 59.0 118 0.6900 0.8182
0.1048 60.0 120 0.5679 0.8182
0.1048 61.0 122 0.4567 0.8182
0.1048 62.0 124 0.3815 0.7955
0.1048 63.0 126 0.3546 0.7955
0.1048 64.0 128 0.3654 0.7955
0.0928 65.0 130 0.3337 0.8864
0.0928 66.0 132 0.4161 0.8409
0.0928 67.0 134 0.3615 0.8409
0.0928 68.0 136 0.4061 0.8182
0.0928 69.0 138 0.4191 0.8182
0.1091 70.0 140 0.3978 0.7955
0.1091 71.0 142 0.5168 0.75
0.1091 72.0 144 0.5268 0.75
0.1091 73.0 146 0.5667 0.7955
0.1091 74.0 148 0.5396 0.7727
0.1009 75.0 150 0.4807 0.75
0.1009 76.0 152 0.3957 0.8182
0.1009 77.0 154 0.3519 0.8636
0.1009 78.0 156 0.3654 0.8636
0.1009 79.0 158 0.3577 0.8409
0.0836 80.0 160 0.3216 0.8636
0.0836 81.0 162 0.3132 0.8409
0.0836 82.0 164 0.3003 0.8636
0.0836 83.0 166 0.3024 0.8636
0.0836 84.0 168 0.3214 0.8409
0.0928 85.0 170 0.3306 0.8182
0.0928 86.0 172 0.3284 0.8409
0.0928 87.0 174 0.3272 0.8182
0.0928 88.0 176 0.3261 0.8182
0.0928 89.0 178 0.3099 0.8409
0.0915 90.0 180 0.2928 0.8409
0.0915 91.0 182 0.2848 0.8409
0.0915 92.0 184 0.2827 0.8409
0.0915 93.0 186 0.2885 0.8636
0.0915 94.0 188 0.3084 0.8864
0.0775 95.0 190 0.3321 0.8409
0.0775 96.0 192 0.3358 0.8636
0.0775 97.0 194 0.3221 0.8409
0.0775 98.0 196 0.3096 0.8636
0.0775 99.0 198 0.3007 0.8864
0.091 100.0 200 0.2976 0.8864

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
27
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BilalMuftuoglu/deit-base-distilled-patch16-224-85-fold5

Finetuned
(73)
this model

Evaluation results