BahAdoR0101's picture
End of training
edfec56
|
raw
history blame
2.17 kB
metadata
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: my_xlm-roberta-large-finetuned-conll03
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: test
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9136102902833304
          - name: Recall
            type: recall
            value: 0.9305949008498584
          - name: F1
            type: f1
            value: 0.9220243838259802
          - name: Accuracy
            type: accuracy
            value: 0.9833530741897276

my_xlm-roberta-large-finetuned-conll03

This model is a fine-tuned version of xlm-roberta-large on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1119
  • Precision: 0.9136
  • Recall: 0.9306
  • F1: 0.9220
  • Accuracy: 0.9834

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2235 1.0 878 0.1090 0.8998 0.9125 0.9061 0.9812
0.0302 2.0 1756 0.1119 0.9136 0.9306 0.9220 0.9834

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1