BahAdoR0101 commited on
Commit
edfec56
·
1 Parent(s): 0cd4a54

End of training

Browse files
Files changed (2) hide show
  1. README.md +91 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2003
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: my_xlm-roberta-large-finetuned-conll03
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ config: conll2003
23
+ split: test
24
+ args: conll2003
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9136102902833304
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9305949008498584
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9220243838259802
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9833530741897276
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # my_xlm-roberta-large-finetuned-conll03
44
+
45
+ This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the conll2003 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1119
48
+ - Precision: 0.9136
49
+ - Recall: 0.9306
50
+ - F1: 0.9220
51
+ - Accuracy: 0.9834
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 2
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2235 | 1.0 | 878 | 0.1090 | 0.8998 | 0.9125 | 0.9061 | 0.9812 |
83
+ | 0.0302 | 2.0 | 1756 | 0.1119 | 0.9136 | 0.9306 | 0.9220 | 0.9834 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.34.1
89
+ - Pytorch 2.1.0+cu118
90
+ - Datasets 2.14.5
91
+ - Tokenizers 0.14.1
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a89c5dee6c184792f023350008431988c5c961a8ac8b8220f1f4f2b06d8e5dcf
3
  size 2235535590
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81374012d6317b6eae637fb857c88a4c86381486fb778088a97b07bd0331f5f6
3
  size 2235535590