File size: 66,547 Bytes
a3cab29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa207e8
a3cab29
 
 
 
 
 
 
 
 
795d940
aa207e8
 
 
a3cab29
 
 
d00dcec
a3cab29
 
 
 
 
 
 
ea165ee
aa207e8
d76d2e0
 
 
aa207e8
 
d76d2e0
 
 
 
a3cab29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a83497c
a3cab29
 
 
 
 
 
 
 
 
 
 
 
 
86b7da7
a3cab29
 
 
aa207e8
 
a3cab29
 
 
 
 
 
 
 
 
 
 
 
0b01bb4
a3cab29
cc03d75
 
 
 
 
 
aa207e8
 
a3cab29
cc03d75
 
 
 
a3cab29
 
b67b04e
a3cab29
 
 
 
b67b04e
a3cab29
 
 
b67b04e
 
 
 
a3cab29
 
 
 
 
 
b67b04e
 
 
a3cab29
 
b67b04e
 
 
a3cab29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e311045
 
 
 
a3cab29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc03d75
 
 
 
a3cab29
 
 
cc03d75
a3cab29
 
319c1e2
 
7b0fc6b
 
319c1e2
f3e276c
2612287
6e38bf4
319c1e2
6e38bf4
319c1e2
 
 
 
 
 
f075c42
 
8e1d69f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319c1e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a2ca8
319c1e2
 
 
 
 
f3e276c
319c1e2
 
 
 
 
 
 
 
 
 
 
f3e276c
 
319c1e2
 
 
 
 
 
 
80a2ca8
 
 
 
319c1e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e276c
 
319c1e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a2ca8
 
 
0d65819
 
 
 
 
 
 
 
 
 
 
8e1d69f
0d65819
 
8e1d69f
0d65819
8e1d69f
 
0d65819
80a2ca8
 
 
 
a3cab29
 
 
 
aa207e8
 
 
32e0d19
 
 
 
 
 
 
 
 
 
 
 
a3cab29
 
 
 
 
 
 
49ce4a5
a3cab29
 
49ce4a5
a3cab29
 
 
 
49ce4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3cab29
 
 
 
 
 
 
49ce4a5
a3cab29
 
49ce4a5
a3cab29
49ce4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3cab29
49ce4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3cab29
 
 
f3cd101
 
eb21611
f3cd101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e1d69f
f3cd101
 
 
 
8e1d69f
f3cd101
 
 
 
 
 
 
 
 
8e1d69f
f3cd101
 
 
 
 
8e1d69f
f3cd101
 
 
 
 
 
a3cab29
 
 
7a88c14
 
 
 
 
 
 
a3cab29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
---
license: apache-2.0
library_name: transformers
pipeline_tag: translation
language:
- it
- pt
- de
- en
- es
- eu
- gl
- fr
- bg
- cs
- lt
- hr
- ca
- nl
- ro
- da
- el
- fi
- hu
- sk
- sl
- et
- pl
- lv
- mt
- ga
- sv
- an
- ast
- oc
base_model:
- BSC-LT/salamandra-2b
---

![](./images/salamandra_header.png)

# Salamandra Model Card


SalamandraTA-2B is a machine translation model that has been continually pre-trained on [Salamandra 2B](https://huggingface.co/BSC-LT/salamandra-2b) on 70 billion tokens of parallel data in 30 different languages:
Catalan, Italian, Portuguese, German, English, Spanish, Euskera, Galician, French, Bulgarian, Czech, Lithuanian, Croatian, Dutch, Romanian, Danish, Greek, Finnish, 
Hungarian, Slovak, Slovenian, Estonian, Polish, Latvian, Swedish, Maltese, Irish, Aranese, Aragonese, Asturian. 
SalamandraTA-2B is the first model in **SalamandraTA** series and is trained to handle sentence- and paragraph- level machine translation.

- **Developed by:** The Language Technologies Unit from Barcelona Supercomputing Center (BSC).
- **Model type:** A 2B parameter model continually pre-trained on 70 billion tokens.
- **Languages:** Catalan, Italian, Portuguese, German, English, Spanish, Euskera, Galician, French, Bulgarian, Czech, Lithuanian, Croatian, Dutch, Romanian, Danish, Greek, Finnish, Hungarian, Slovak, Slovenian, Estonian, Polish, Latvian, Swedish, Maltese, Irish, Aranese, Aragonese, Asturian.
- **License:** Apache License, Version 2.0


## Model Details

### Description

This machine translation model is built upon the foundation of [Salamandra 2B](https://huggingface.co/BSC-LT/salamandra-2b). By leveraging the knowledge of the base Salamandra 2B model, 
this model is able to perform high quality translations between **almost 900 translation directions**.

Key Features:

* **Continual Pretraining:** The model is trained on 70 Billion tokens of parallel data. All data employed is open-sourced or generated from open-source
* data using the Machine Translation models at [BSC](https://huggingface.co/collections/projecte-aina/mt-models-655e154668c6dd132159081c)
* **Large Language Model Foundation:** Built on Salamandra 2B, providing a strong language understanding and generation capability.
* **Multilingual Support:** Capable of translating between 30 european languages, including low-resource languages.
* **High-Quality Translations:** Delivers accurate and fluent translations, thanks to its continual pretraining and large-scale dataset.
* **Efficient Inference:** 2 Billion parameters allow for a trade-off between performance and hardware requirements by most systems.

### Hyperparameters

The full list of hyperparameters for each model can be found [here](https://github.com/langtech-bsc/salamandra/tree/main/configs).

### Architecture

|                         |               |
|-------------------------|:--------------|
| Total Parameters        | 2,253,490,176 |
| Embedding Parameters    | 524,288,000   |
| Layers                  | 24            |
| Hidden size             | 2,048         |
| Attention heads         | 16            |
| Context length          | 8,192         |
| Vocabulary size         | 256,000       |
| Precision               | bfloat16      |
| Embedding type          | RoPE          |
| Activation Function     | SwiGLU        |
| Layer normalization     | RMS Norm      |
| Flash attention         | ✅            |
| Grouped Query Attention | ❌            |
| Num. query groups       | N/A           |

---

## Intended Use

### Direct Use

The models are intended for both research and commercial use in any of the languages included in the training data. 
The base models are intended for general machine translation tasks.

### Out-of-scope Use

The model is not intended for malicious activities, such as harming others or violating human rights. 
Any downstream application must comply with current laws and regulations. 
Irresponsible usage in production environments without proper risk assessment and mitigation is also discouraged. 

---

## Hardware and Software

### Training Framework

Continual pre-training was conducted using [LLaMA-Factory framework](https://github.com/hiyouga/LLaMA-Factory).

### Compute Infrastructure

All models were trained on [MareNostrum 5](https://www.bsc.es/ca/marenostrum/marenostrum-5), a pre-exascale EuroHPC supercomputer hosted and 
operated by Barcelona Supercomputing Center.

The accelerated partition is composed of 1,120 nodes with the following specifications:
- 4x Nvidia Hopper GPUs with 64 HBM2 memory
- 2x Intel Sapphire Rapids 8460Y+ at 2.3Ghz and 32c each (64 cores)
- 4x NDR200 (BW per node 800Gb/s)
- 512 GB of Main memory (DDR5)
- 460GB on NVMe storage

---

## How to use

To translate with the salamandraTA-2B model, first you need to create a prompt that specifies the source and target languages in this format:

```css
[source_language] sentence \n[target_language]
```

You can translate between these languages by using their names directly:

Italian, Portuguese, German, English, Spanish, Euskera, Galician, French, Bulgarian, Czech, Lithuanian, Croatian, Dutch, Romanian, Danish, Greek, Finnish, 
Hungarian, Slovak, Slovenian, Estonian, Polish, Latvian, Swedish, Maltese, Irish, Aranese, Aragonese, Asturian.


### Inference

To translate from Spanish to Catalan using Huggingface's AutoModel class on a single sentence you can use the following code:

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = 'BSC-LT/salamandraTA-2b'

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

src_lang_code = 'Spanish'
tgt_lang_code = 'Catalan'
sentence = 'Ayer se fue, tomó sus cosas y se puso a navegar.'

prompt = f'[{src_lang_code}] {sentence} \n[{tgt_lang_code}]'

# Tokenize and move inputs to the same device as the model
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(device)
output_ids = model.generate(input_ids, max_length=500, num_beams=5)
input_length = input_ids.shape[1]

generated_text = tokenizer.decode(output_ids[0, input_length:], skip_special_tokens=True).strip()
print(generated_text)
#Ahir se'n va anar, va agafar les seves coses i es va posar a navegar.
```

<br>


To run batch inference using Huggingface's AutoModel class you can use the following code.

<details>
<summary>Show code</summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = 'BSC-LT/salamandraTA-2b'

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation='eager')

# Move the model to GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

# List of sentences to translate
sentences = [
  'Ayer se fue, tomó sus cosas y se puso a navegar.',
  'Se despidió y decidió batirse en duelo con el mar, y recorrer el mundo en su velero',
  'Su corazón buscó una forma diferente de vivir, pero las olas le gritaron: Vete con los demás',
  'Y se durmió y la noche le gritó: Dónde vas, y en sus sueños dibujó gaviotas, y pensó: Hoy debo regresar.'
]

src_lang_code = 'Spanish'
tgt_lang_code = 'Catalan'

prompt = lambda x: f'[{src_lang_code}] {x} \n[{tgt_lang_code}]'
prompts = [prompt(x) for x in sentences]


encodings = tokenizer(prompts, return_tensors='pt', padding=True, add_special_tokens=True)

input_ids = encodings['input_ids'].to(model.device)
attention_mask = encodings['attention_mask'].to(model.device)

with torch.no_grad(): 
    outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask, num_beams=5,max_length=256,early_stopping=True)

results_detokenized = []
for i, output in enumerate(outputs):
    input_length = input_ids[i].shape[0]
    generated_text = tokenizer.decode(output[input_length:], skip_special_tokens=True).strip()
    results_detokenized.append(generated_text)

print("Generated Translations:", results_detokenized)

#Generated Translations: ["Ahir se'n va anar, va agafar les seves coses i es va posar a navegar.", 
#"Es va acomiadar i va decidir batre's en duel amb el mar, i recórrer el món en el seu veler", 
#"El seu cor va buscar una forma diferent de viure, però les onades li van cridar: Vés amb els altres", 
#"I es va adormir i la nit li va cridar: On vas, i en els seus somnis va dibuixar gavines, i va pensar: Avui he de tornar."]
```
</details>


## Data

### Pretraining Data

The training corpus consists of 70 billion tokens of Catalan- and Spanish-centric parallel data, including all of the official European languages plus Catalan, Basque, 
Galician, Asturian, Aragonese and Aranese. It amounts to 3,157,965,012 parallel sentence pairs. 

This highly multilingual corpus is predominantly composed of data sourced from [OPUS](https://opus.nlpl.eu/), with additional data taken from the [NTEU project](https://nteu.eu/) and Project Aina’s existing corpora. 
Where little parallel Catalan <-> xx data could be found, synthetic Catalan data was generated from the Spanish side of the collected Spanish <-> xx corpora using 
[Projecte Aina’s Spanish-Catalan model](https://huggingface.co/projecte-aina/aina-translator-es-ca). The final distribution of languages was as below:

![](./treemap.png)

Click the expand button below to see the full list of corpora included in the training data.

<details>
<summary>Data Sources</summary>
 
| Dataset                                   	| Ca-xx Languages                                                                                                	|  Es-xx Langugages                             |
|-----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|
|[CCMatrix](https://opus.nlpl.eu/CCMatrix/corpus/version/CCMatrix)		|eu			|		|
|[DGT](https://opus.nlpl.eu/DGT/corpus/version/DGT)			|			|bg,cs,da,de,el	,et,fi,fr,ga,hr,hu,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv	|
|[ELRC-EMEA](https://opus.nlpl.eu/ELRC-EMEA/corpus/version/ELRC-EMEA)		|			|bg,cs,da,hu,lt,lv,mt,pl,ro,sk,sl		|
|[EMEA](https://opus.nlpl.eu/EMEA/corpus/version/EMEA)			|			|bg,cs,da,el,fi,hu,lt,mt,nl,pl,ro,sk,sl,sv		|
|[EUBookshop](https://opus.nlpl.eu/EUbookshop/corpus/version/EUbookshop)		|lt,pl,pt			|cs,da,de,el,fi,fr,ga,it,lv,mt,nl,pl,pt,ro,sk,sl,sv		|
|[Europarl](https://opus.nlpl.eu/Europarl/corpus/version/Europarl)		|			|bg,cs,da,el,fi,fr,hu,lt,lv,nl,pl,pt	,ro,sk,sl,sv	|
|[Europat](https://opus.nlpl.eu/EuroPat/corpus/version/EuroPat)		|			|hr		|
|[KDE4](https://opus.nlpl.eu/KDE4/corpus/version/KDE4)			|bg,cs,da,de,el	,et,eu,fi,fr,ga,gl,hr,it,lt,lv,nl,pl,pt,ro,sk,sl,sv	|bg,ga,hr	|
|[GlobalVoices](https://opus.nlpl.eu/GlobalVoices/corpus/version/GlobalVoices)		| bg,de,fr,it,nl,pl,pt	|bg,de,fr,pt		|
|[GNOME](https://opus.nlpl.eu/GNOME/corpus/version/GNOME)		|eu,fr,ga,gl,pt		|ga		|
|[JRC-Arquis](https://opus.nlpl.eu/JRC-Acquis/corpus/version/JRC-Acquis)		|			|cs,da,et,fr,lt,lv,mt,nl,pl	,ro,sv|	
|[MultiCCAligned](https://opus.nlpl.eu/JRC-Acquis/corpus/version/JRC-Acquis)	|bg,cs,de,el,et,fi,fr,hr,hu,it,lt,lv,nl,pl,ro,sk,sv	|bg,fi,fr,hr,it,lv,nl,pt		|	
|[MultiHPLT](https://opus.nlpl.eu/MultiHPLT/corpus/version/MultiHPLT)		|et,fi,ga,hr,mt		|		|
|[MultiParaCrawl](https://opus.nlpl.eu/MultiParaCrawl/corpus/version/MultiParaCrawl)	|bg,da		|de,fr,ga,hr,hu,it,mt,pt		|	|
|[MultiUN](https://opus.nlpl.eu/MultiUN/corpus/version/MultiUN)		|			|fr	|	|	
|[News-Commentary](https://opus.nlpl.eu/News-Commentary/corpus/version/News-Commentary) 	|		|fr		|
|[NLLB](https://opus.nlpl.eu/NLLB/corpus/version/NLLB)			|bg,da,el,et,fi,fr,gl,hu,it	,lt,lv,pt,ro,sk,sl	|bg,cs,da,de,el	,et,fi,fr,hu,it,lt,lv,nl,pl,pt	,ro,sk,sl,sv|
|[NTEU](https://www.elrc-share.eu/repository/search/?q=NTEU)			|			|bg,cs,da,de,el	,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv	|	
|[OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles) 	|bg,cs,da,de,el	,et,eu,fi,gl,hr,hu,lt,lv,nl,pl,pt,ro,sk,sl,sv	|da,de,fi,fr,hr,hu,it,lv,nl		|
|[Tatoeba](https://opus.nlpl.eu/Tatoeba/corpus/version/Tatoeba)		|de,pt			|pt		|
|[TildeModel](https://opus.nlpl.eu/TildeMODEL/corpus/version/TildeMODEL)		|			|bg		|
|[UNPC](https://opus.nlpl.eu/UNPC/corpus/version/UNPC)			|			|fr		|	
|[WikiMatrix](https://opus.nlpl.eu/WikiMatrix/corpus/version/WikiMatrix)		|bg,cs,da,de,el	,et,eu,fi,fr,gl,hr,hu,it,lt,nl,pl,pt,ro,sk,sl,sv	|bg,fr,hr,it,pt		|
|[XLENT](https://opus.nlpl.eu/XLEnt/corpus/version/XLEnt)		|eu,ga,gl			|ga		|



</details>


We provide an extense Datasheet section following the best practices defined by [(Gebru et al., 2021)](https://arxiv.org/pdf/1803.09010).

<details>
<summary>Datasheet</summary>

#### Motivation

**For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a description.**

The purpose of creating this dataset is to pre-train multilingual models on parallel data in a large number of European languages, with Spanish and Catalan as the pivot languages. We have found that there is a lack of high quality parallel data in the scale necessary for training models, particularly between mid to low resource languages, and so in this dataset we have attempted to compile all publicly available resources for the included smaller languages, in addition to creating additional resources for Catalan as the pivot language.

**Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?**

The dataset has been created by the Machine Translation sub-group of the Language Technologies unit (LangTech) of the Barcelona Supercomputing Center - Centro Nacional de
Supercomputación (BSC-CNS), which aims to advance the field of natural language processing through cutting-edge research and development
and the use of HPC. In particular, the main contributors were Audrey Mash and Francesca De Luca Fornaciari.

**Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number.**

This work/research has been promoted and financed by the Government of Catalonia through the [Aina project](https://projecteaina.cat/).

#### Composition

**What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions between them; nodes and edges)? Please provide a description.**

The dataset consists entirely of parallel text separated at sentence level. Specifically, data was mainly sourced from the following databases and
repositories:
- **[Opus](https://opus.nlpl.eu/):** Repository which aims to provide freely available parallel datasets in order to advance work in computational linguistics and automatic translation. 
- **[ELRC-SHARE](https://www.elrc-share.eu/):** Repository used for documenting, storing, browsing and accessing Language Resources that are collected through the European Language Resource Coordination.

**How many instances are there in total (of each type, if appropriate)?**

The dataset contains a diverse range of sentence pairs across multiple languages. 36.02% of the data is parallel with Catalan, 27.59% is parallel with Spanish and 0.37% is parallel with English.

**Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or unavailable).**

The dataset is a sample from various sources. Language pairs which had fewer than 100 million parallel sentence pairs after filtering and cleaning were taken 
in their entirety. A sample of 100 million sentence pairs was taken from language pairs which had more data than this after preprocessing. All sampling was random. 
Where very little data existed between Catalan and the target language, synthetic Catalan data was created in order to increase the sample size. 
This was done using [Projecte Aina’s Spanish-Catalan model](https://huggingface.co/projecte-aina/aina-translator-es-ca).

**What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please provide a description.**

Each instance consists of a parallel sentence pair processed for deduplication, language identification, and language alignment. 

**Is there a label or target associated with each instance? If so, please provide a description.**

Each instance is labelled with the two languages present in the sentence pair.

**Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was unavailable). This does not include intentionally removed information, but might include, e.g., redacted text.**

No significant information is missing from the instances.

**Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please describe how these relationships are made explicit.**

Instances are related through shared language identifiers.

**Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the rationale behind them.**

The dataset is split randomly into training, validation, and test sets.

**Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.**

Despite filtering for alignment and language identification, a small number of misaligned sentence pairs and incorrectly labelled languages may remain present in the data. The thresholds chosen for this task aim to achieve an optimal balance, prioritising higher accuracy.

**Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that they will exist, and remain constant, over time; b) are there official archival versions of the complete dataset (i.e., including the external resources as they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources that might apply to a dataset consumer? Please provide descriptions of all external resources and any restrictions associated with them, as well as links or other access points, as appropriate.**

The dataset is self-contained and does not rely on external resources.

**Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor–patient confidentiality, data that includes the content of individuals’ non-public communications)? If so, please provide a description.**

The dataset does not contain confidential data.

**Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please describe why. If the dataset does not relate to people, you may skip the remaining questions in this section.**

The dataset includes web-crawled content, which may overrepresent pornographic material across languages (Kreutzer et al., 2022). We have performed no filtering for toxic material.

**Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description of their respective distributions within the dataset.**

The dataset does not explicitly identify any subpopulations.

**Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.**

Web-sourced instances in the dataset may contain personally identifiable information (PII) that is publicly available on the Web, such as
names, IP addresses, email addresses, and phone numbers. While it would be possible to indirectly identify individuals through the
combination of multiple data points, the nature and scale of web data makes it difficult to parse such information. 

**Does the dataset contain data that might be considered sensitive in any way? If so, please provide a description.**

Given that the dataset includes web-sourced content and other publicly available documents, instances may inadvertently reveal financial
information, health-related details, or forms of government identification, such as social security numbers (Subramani et al., 2023),
especially if the content originates from less-regulated sources or user-generated platforms.

#### Collection Process

**How was the data collected?**

This dataset is constituted by combining several sources, all of which take the form of web-sourced datasets with some preprocessing available under permissive license (p.e. Common Crawl).

**What mechanisms or procedures were used to collect the data? How were these mechanisms or procedures validated?**

All datasets were acquired through open direct download and validated with data integrity tests. 

**If the dataset is a sample from a larger set, what was the sampling strategy?**

The sampling strategy was to use the whole dataset resulting from the filtering explained in the ‘preprocessing/cleaning/labelling’ section,
with the particularity that language pairs consisting of over 100 million sentence pairs were randomly sampled down to 100 million.

**Who was involved in the data collection process and how were they compensated?**

This data is generally extracted, filtered and sampled by automated processes. The code required to run these processes has been developed
entirely by members of the LangTech data team, or otherwise obtained from open-source software. Furthermore, there has been no monetary
consideration for acquiring data from suppliers.

**Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the instances? If not, please describe the timeframe in which the data associated with the instances was created.**

Data were acquired and processed from April 2023 to August 2024. However, as mentioned, much data has been obtained from open projects such
as Common Crawl, which contains data from 2014, so it is the end date (04/2024) rather than the start date that is important.

**Were any ethical review processes conducted? If so, please provide a description of these review processes, including the outcomes, as well as a link or other access point to any supporting documentation.**

No particular ethical review process has been carried out as the data is mostly open and not particularly sensitive. However, we have an
internal evaluation team and a bias team to monitor ethical issues. In addition, we work closely with ‘Observatori d'Ètica en Intel·ligència
Artificial’ (OEIAC) and  ‘Agencia Española de Supervisión de la Inteligencia Artificial’ (AESIA) to audit the processes we carry out from an
ethical and legal point of view, respectively.

#### Preprocessing

**Was any preprocessing/cleaning/labeling of the data done? If so, please provide a description. If not, you may skip the remaining questions in this section.**

All data was filtered according to two specific criteria:
- Alignment - sentence level alignments were calculated using [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) and sentence pairs with a score below 0.75 were discarded.
- Language identification - The probability of being the target language was calculated using either [Idiomata Cognitor](https://github.com/transducens/idiomata_cognitor) or [Lingua.py](https://github.com/pemistahl/lingua-py) and sentences identified as unlikely to be the correct language were filtered out. Thresholds varied by language. 

**Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data? If so, please provide a link or other access point to the “raw” data.**

The original raw data was kept on the BSC servers but is not publicly available.

**Is the software that was used to preprocess/clean/label the data available? If so, please provide a link or other access point.**

No, our internal cleaning pipeline for parallel data has not been made publicly available.

#### Uses

**Has the dataset been used for any tasks already? If so, please provide a description.**

Pre-train the SalamandraTA model family.

**What (other) tasks could the dataset be used for?**

The data can be used primarily to pre-train other Machine Translation models.

**Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses? Is there anything a dataset consumer could do to mitigate these risks or harms?**
 
Web-crawled content is over-represented with standard language varieties, impacting language model performance for minority languages.
Language diversity in data is crucial to avoid bias, especially in encoding non-standard dialects, preventing the exclusion of demographic
groups. Moreover, despite legal uncertainties in web-scraped data, we prioritize permissive licenses and privacy protection measures,
acknowledging the challenges posed by personally identifiable information (PII) within large-scale datasets. Our ongoing efforts aim to
address privacy concerns and contribute to a more inclusive linguistic dataset.

**Are there tasks for which the dataset should not be used?**

-

#### Distribution

**Will the dataset be distributed to third parties outside of the entity on behalf of which the dataset was created? If so, please provide a description.**

The dataset will not be released or distributed to third parties. Any related question to distribution is omitted in this section.

#### Maintenance

**Who will be supporting/hosting/maintaining the dataset?**

The dataset will be hosted by the Language Technologies unit (LangTech) of the Barcelona Supercomputing Center (BSC). The team will ensure
regular updates and monitor the dataset for any issues related to content integrity, legal compliance, and bias for the sources they are
responsible for.

**How can the owner/curator/manager of the dataset be contacted?**

The data owner may be contacted with the email address [email protected].

**Will the dataset be updated?**

The dataset will not be updated.

**If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances? If so, please describe these limits and explain how they will be enforced.**

The dataset does not keep sensitive data that could allow direct identification of individuals, apart from the data that is publicly
available in web-sourced content. Due to the sheer volume and diversity of web data, it is not feasible to notify individuals or manage data
retention on an individual basis. However, efforts are made to mitigate the risks associated with sensitive information through
pre-processing and filtering to remove identifiable or harmful content. Despite these measures, vigilance is maintained to address potential
privacy and ethical issues.

**Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe how its obsolescence will be communicated to dataset consumers.**

Since the dataset will not be updated, only the final version will be kept.

**If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so?**

The dataset does not allow for external contributions.

</details>

<details>
<summary>References</summary>

- Aulamo, M., Sulubacak, U., Virpioja, S., & Tiedemann, J. (2020). OpusTools and Parallel Corpus Diagnostics. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference (pp. 3782–3789). European Language Resources Association. https://aclanthology.org/2020.lrec-1.467
- Chaudhary, V., Tang, Y., Guzmán, F., Schwenk, H., & Koehn, P. (2019). Low-Resource Corpus Filtering Using Multilingual Sentence Embeddings. In O. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck, A. J. Yepes, P. Koehn, A. Martins, C. Monz, M. Negri, A. Névéol, M. Neves, M. Post, M. Turchi, & K. Verspoor (Eds.), Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2) (pp. 261–266). Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-5435
- DGT-Translation Memory—European Commission. (n.d.). Retrieved November 4, 2024, from https://joint-research-centre.ec.europa.eu/language-technology-resources/dgt-translation-memory_en
- Eisele, A., & Chen, Y. (2010). MultiUN: A Multilingual Corpus from United Nation Documents. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, & D. Tapias (Eds.), Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf
- El-Kishky, A., Chaudhary, V., Guzmán, F., & Koehn, P. (2020). CCAligned: A Massive Collection of Cross-Lingual Web-Document Pairs. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 5960–5969. https://doi.org/10.18653/v1/2020.emnlp-main.480
- El-Kishky, A., Renduchintala, A., Cross, J., Guzmán, F., & Koehn, P. (2021). XLEnt: Mining a Large Cross-lingual Entity Dataset with Lexical-Semantic-Phonetic Word Alignment. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 10424–10430. https://doi.org/10.18653/v1/2021.emnlp-main.814
- Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., Baines, M., Celebi, O., Wenzek, G., Chaudhary, V., Goyal, N., Birch, T., Liptchinsky, V., Edunov, S., Grave, E., Auli, M., & Joulin, A. (2020). Beyond English-Centric Multilingual Machine Translation (No. arXiv:2010.11125). arXiv. https://doi.org/10.48550/arXiv.2010.11125
- García-Martínez, M., Bié, L., Cerdà, A., Estela, A., Herranz, M., Krišlauks, R., Melero, M., O’Dowd, T., O’Gorman, S., Pinnis, M., Stafanovič, A., Superbo, R., & Vasiļevskis, A. (2021). Neural Translation for European Union (NTEU). 316–334. https://aclanthology.org/2021.mtsummit-up.23
- Gibert, O. de, Nail, G., Arefyev, N., Bañón, M., Linde, J. van der, Ji, S., Zaragoza-Bernabeu, J., Aulamo, M., Ramírez-Sánchez, G., Kutuzov, A., Pyysalo, S., Oepen, S., & Tiedemann, J. (2024). A New Massive Multilingual Dataset for High-Performance Language Technologies (No. arXiv:2403.14009). arXiv. http://arxiv.org/abs/2403.14009
- Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Translation. Proceedings of Machine Translation Summit X: Papers, 79–86. https://aclanthology.org/2005.mtsummit-papers.11
- Kreutzer, J., Caswell, I., Wang, L., Wahab, A., Van Esch, D., Ulzii-Orshikh, N., Tapo, A., Subramani, N., Sokolov, A., Sikasote, C., Setyawan, M., Sarin, S., Samb, S., Sagot, B., Rivera, C., Rios, A., Papadimitriou, I., Osei, S., Suarez, P. O., … Adeyemi, M. (2022). Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets. Transactions of the Association for Computational Linguistics, 10, 50–72. https://doi.org/10.1162/tacl_a_00447
- Rozis, R.,Skadiņš, R (2017). Tilde MODEL - Multilingual Open Data for EU Languages. https://aclanthology.org/W17-0235
- Schwenk, H., Chaudhary, V., Sun, S., Gong, H., & Guzmán, F. (2019). WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia (No. arXiv:1907.05791). arXiv. https://doi.org/10.48550/arXiv.1907.05791
- Schwenk, H., Wenzek, G., Edunov, S., Grave, E., & Joulin, A. (2020). CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB (No. arXiv:1911.04944). arXiv. https://doi.org/10.48550/arXiv.1911.04944
- Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D., & Varga, D. (n.d.). The JRC-Acquis: A Multilingual Aligned Parallel Corpus with 20+ Languages. http://www.lrec-conf.org/proceedings/lrec2006/pdf/340_pdf
- Subramani, N., Luccioni, S., Dodge, J., & Mitchell, M. (2023). Detecting Personal Information in Training Corpora: An Analysis. In A. Ovalle, K.-W. Chang, N. Mehrabi, Y. Pruksachatkun, A. Galystan, J. Dhamala, A. Verma, T. Cao, A. Kumar, & R. Gupta (Eds.), Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023) (pp. 208–220). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.trustnlp-1.18
- Tiedemann, J. (23-25). Parallel Data, Tools and Interfaces in OPUS. In N. C. (Conference Chair), K. Choukri, T. Declerck, M. U. Doğan, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12). European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper
- Ziemski, M., Junczys-Dowmunt, M., & Pouliquen, B. (n.d.). The United Nations Parallel Corpus v1.0. https://aclanthology.org/L16-1561



</details>



## Evaluation

Below are the evaluation results on Flores-200 dev and devtest compared to NLLB-3.3 ([Costa-jussà et al., 2022](https://arxiv.org/abs/2207.04672)) for CA-XX 
and XX-CA directions. The metrics have been computed excluding Asturian, Aranese, and Aragonese as we report them separately. The evaluation was conducted 
using [MT Lens](https://github.com/langtech-bsc/mt-evaluation) following the standard setting (beam search with beam size 5, limiting the translation length to 250 tokens). We report the following metrics:

<details>
<summary>Click to show metrics details</summary>

- `BLEU`: Sacrebleu implementation. Signature: nrefs:1— case:mixed— eff:no— tok:13a— smooth:exp—version:2.3.1
- `TER`: Sacrebleu implementation.
- `ChrF`: Sacrebleu implementation.
- `Comet`: Model checkpoint: "Unbabel/wmt22-comet-da".
- `Comet-kiwi`: Model checkpoint: "Unbabel/wmt22-cometkiwi-da".
- `Bleurt`: Model checkpoint: "lucadiliello/BLEURT-20".

</details>


#### Flores200-dev

|              |   Bleu ↑ |   Ter ↓ |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |   Bleurt ↑ |
|:-----------------------|-------:|------:|-------:|--------:|-------------:|---------:|
| **CA-XX** |  |  |  |  |  |  |
| SalamandraTA-2B  |  **27.41** | **60.88** |  **56.27** |    0.86 |         0.82 |     0.76 |
| nllb 3.3B               |  26.84 | 61.75 |  55.7  |    0.86 |         0.82 |     0.76 |
| **XX-CA** |  |  |  |  |  |  |
| SalamandraTA-2B |  **30.75** | **57.66** |  **57.6**  |    0.85 |         0.81 |     0.73 |
| nllb 3.3B              |  29.76 | 58.25 |  56.75 |    0.85 |         **0.82** |     0.73 |


<details>
<summary>Click to show full table CA-XX Flores-dev</summary>

|              | source   | target   |   Bleu ↑ |   Ter ↓ |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |   Bleurt ↑ |
|:-----------------------|:---------|:---------|-------:|------:|-------:|--------:|-------------:|---------:|
| nllb 3.3B              | ca       | sv       |  33.05 | 53.98 |  60.09 |    0.88 |         0.83 |     0.79 |
| SalamandraTA-2B | ca       | sv       |  30.62 | 55.4  |  57.77 |    0.87 |         0.81 |     0.78 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | sl       |  25.74 | 63.78 |  54.29 |    0.88 |         0.83 |     0.81 |
| nllb 3.3B              | ca       | sl       |  25.04 | 65.02 |  53.08 |    0.88 |         0.83 |     0.82 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | sk       |  26.03 | 62.58 |  53.53 |    0.89 |         0.84 |     0.8  |
| nllb 3.3B              | ca       | sk       |  25.59 | 63.17 |  53.28 |    0.89 |         0.84 |     0.8  |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | ro       |  33.08 | 54.36 |  59.18 |    0.89 |         0.85 |     0.8  |
| nllb 3.3B              | ca       | ro       |  31.91 | 55.46 |  58.36 |    0.89 |         0.85 |     0.81 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | pt       |  37.6  | 48.82 |  62.73 |    0.88 |         0.84 |     0.76 |
| nllb 3.3B              | ca       | pt       |  36.85 | 49.56 |  62.02 |    0.88 |         0.85 |     0.76 |
|  | | | | | | | | |
| nllb 3.3B              | ca       | pl       |  17.97 | 73.06 |  47.94 |    0.88 |         0.84 |     0.78 |
| SalamandraTA-2B | ca       | pl       |  17.85 | 72.67 |  47.77 |    0.88 |         0.84 |     0.78 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | nl       |  23.88 | 64.95 |  54.46 |    0.85 |         0.84 |     0.75 |
| nllb 3.3B              | ca       | nl       |  23.26 | 66.46 |  54.17 |    0.85 |         0.85 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | mt       |  25.62 | 59.08 |  60.83 |    0.69 |         0.61 |     0.43 |
| nllb 3.3B              | ca       | mt       |  25.37 | 59.47 |  60.1  |    0.69 |         0.63 |     0.39 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | lv       |  21.23 | 71.48 |  49.47 |    0.82 |         0.79 |     0.73 |
| nllb 3.3B              | ca       | lv       |  20.56 | 70.88 |  50.07 |    0.85 |         0.78 |     0.77 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | lt       |  19.92 | 71.02 |  50.88 |    0.87 |         0.8  |     0.81 |
| nllb 3.3B              | ca       | lt       |  18.82 | 71.8  |  51.84 |    0.87 |         0.82 |     0.82 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | it       |  26.76 | 60.67 |  56.3  |    0.88 |         0.85 |     0.77 |
| nllb 3.3B              | ca       | it       |  26.42 | 61.47 |  55.66 |    0.87 |         0.86 |     0.77 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | hu       |  22.8  | 66.41 |  53.41 |    0.86 |         0.82 |     0.85 |
| nllb 3.3B              | ca       | hu       |  21.2  | 68.54 |  51.99 |    0.87 |         0.83 |     0.87 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | hr       |  26.24 | 61.83 |  55.87 |    0.89 |         0.84 |     0.81 |
| nllb 3.3B              | ca       | hr       |  24.04 | 64.25 |  53.79 |    0.89 |         0.85 |     0.82 |
|  | | | | | | | | |
| nllb 3.3B              | ca       | gl       |  32.85 | 51.69 |  59.33 |    0.87 |         0.85 |     0.72 |
| SalamandraTA-2B | ca       | gl       |  31.84 | 52.52 |  59.16 |    0.87 |         0.84 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | ga       |  25.24 | 63.36 |  53.24 |    0.78 |         0.64 |     0.62 |
| nllb 3.3B              | ca       | ga       |  23.51 | 66.54 |  51.53 |    0.77 |         0.66 |     0.62 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | fr       |  40.14 | 48.34 |  64.24 |    0.86 |         0.84 |     0.73 |
| nllb 3.3B              | ca       | fr       |  39.8  | 48.96 |  63.97 |    0.86 |         0.85 |     0.74 |
|  | | | | | | | | |
| nllb 3.3B              | ca       | fi       |  18.63 | 71.42 |  52.71 |    0.89 |         0.82 |     0.82 |
| SalamandraTA-2B | ca       | fi       |  18.49 | 71.46 |  52.09 |    0.88 |         0.8  |     0.8  |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | eu       |  18.75 | 71.09 |  57.05 |    0.87 |         0.81 |     0.8  |
| nllb 3.3B              | ca       | eu       |  13.15 | 77.69 |  50.35 |    0.83 |         0.75 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | et       |  22.03 | 67.55 |  54.87 |    0.88 |         0.8  |     0.79 |
| nllb 3.3B              | ca       | et       |  20.07 | 70.66 |  53.19 |    0.88 |         0.81 |     0.8  |
|  | | | | | | | | |
| nllb 3.3B              | ca       | es       |  25.59 | 60.39 |  53.7  |    0.86 |         0.86 |     0.74 |
| SalamandraTA-2B | ca       | es       |  24.46 | 61.54 |  53.02 |    0.86 |         0.86 |     0.74 |
|  | | | | | | | | |
| nllb 3.3B              | ca       | en       |  49.62 | 37.33 |  71.65 |    0.89 |         0.86 |     0.8  |
| SalamandraTA-2B | ca       | en       |  46.62 | 40.03 |  70.23 |    0.88 |         0.86 |     0.79 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | el       |  23.38 | 63    |  50.03 |    0.87 |         0.84 |     0.74 |
| nllb 3.3B              | ca       | el       |  22.62 | 63.73 |  49.5  |    0.87 |         0.84 |     0.74 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | de       |  31.89 | 57.12 |  59.07 |    0.84 |         0.83 |     0.75 |
| nllb 3.3B              | ca       | de       |  31.19 | 57.87 |  58.47 |    0.85 |         0.84 |     0.76 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | da       |  34.69 | 53.31 |  61.11 |    0.87 |         0.82 |     0.75 |
| nllb 3.3B              | ca       | da       |  34.32 | 54.2  |  60.2  |    0.88 |         0.83 |     0.77 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | cs       |  25.67 | 63.37 |  53.07 |    0.89 |         0.85 |     0.79 |
| nllb 3.3B              | ca       | cs       |  25.02 | 63.59 |  52.43 |    0.89 |         0.85 |     0.79 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | bg       |  32.09 | 57.01 |  59.4  |    0.89 |         0.85 |     0.84 |
| nllb 3.3B              | ca       | bg       |  31.24 | 58.41 |  58.81 |    0.89 |         0.86 |     0.85 |

</details>


<details>
<summary>Click to show full table XX-CA Flores-dev</summary>

|              | source   | target   |   Bleu ↑ |   Ter ↓ |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |   Bleurt ↑ |
|:-----------------------|:---------|:---------|-------:|------:|-------:|--------:|-------------:|---------:|
| SalamandraTA-2B | sv       | ca       |  34.21 | 53    |  59.52 |    0.86 |         0.83 |     0.74 |
| nllb 3.3B              | sv       | ca       |  33.03 | 53.42 |  59.02 |    0.86 |         0.84 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | sl       | ca       |  28.98 | 59.95 |  56.24 |    0.85 |         0.82 |     0.72 |
| nllb 3.3B              | sl       | ca       |  27.51 | 61.23 |  54.96 |    0.85 |         0.83 |     0.72 |
|  | | | | | | | | |
| SalamandraTA-2B | sk       | ca       |  30.61 | 58.1  |  57.53 |    0.86 |         0.81 |     0.73 |
| nllb 3.3B              | sk       | ca       |  29.24 | 58.93 |  56.29 |    0.86 |         0.83 |     0.73 |
|  | | | | | | | | |
| SalamandraTA-2B | ro       | ca       |  33.73 | 54.23 |  60.11 |    0.87 |         0.83 |     0.75 |
| nllb 3.3B              | ro       | ca       |  32.9  | 54.71 |  59.56 |    0.87 |         0.84 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | pt       | ca       |  35.99 | 50.64 |  61.52 |    0.87 |         0.84 |     0.76 |
| nllb 3.3B              | pt       | ca       |  34.63 | 51.15 |  60.68 |    0.87 |         0.84 |     0.76 |
|  | | | | | | | | |
| SalamandraTA-2B | pl       | ca       |  25.77 | 64.99 |  53.46 |    0.84 |         0.82 |     0.71 |
| nllb 3.3B              | pl       | ca       |  24.41 | 65.69 |  52.45 |    0.85 |         0.83 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | nl       | ca       |  26.04 | 64.09 |  53.64 |    0.84 |         0.84 |     0.71 |
| nllb 3.3B              | nl       | ca       |  25.35 | 64.64 |  53.15 |    0.84 |         0.85 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | mt       | ca       |  37.51 | 50.18 |  62.42 |    0.79 |         0.69 |     0.75 |
| nllb 3.3B              | mt       | ca       |  36.29 | 51.01 |  61.24 |    0.79 |         0.7  |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | lv       | ca       |  27.14 | 62.61 |  55.6  |    0.84 |         0.78 |     0.7  |
| nllb 3.3B              | lv       | ca       |  27.02 | 61.12 |  54.28 |    0.84 |         0.79 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | lt       | ca       |  27.76 | 61.3  |  54.52 |    0.84 |         0.76 |     0.71 |
| nllb 3.3B              | lt       | ca       |  26.05 | 62.75 |  53.4  |    0.84 |         0.77 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | it       | ca       |  28.44 | 61.09 |  57.12 |    0.87 |         0.85 |     0.74 |
| nllb 3.3B              | it       | ca       |  27.79 | 61.42 |  56.62 |    0.87 |         0.86 |     0.74 |
|  | | | | | | | | |
| SalamandraTA-2B | hu       | ca       |  28.15 | 60.01 |  55.29 |    0.85 |         0.81 |     0.72 |
| nllb 3.3B              | hu       | ca       |  27.06 | 60.44 |  54.38 |    0.85 |         0.83 |     0.72 |
|  | | | | | | | | |
| SalamandraTA-2B | hr       | ca       |  29.89 | 58.61 |  56.62 |    0.85 |         0.82 |     0.72 |
| nllb 3.3B              | hr       | ca       |  28.23 | 59.55 |  55.37 |    0.86 |         0.84 |     0.73 |
|  | | | | | | | | |
| nllb 3.3B              | gl       | ca       |  34.28 | 52.34 |  60.86 |    0.87 |         0.85 |     0.76 |
| SalamandraTA-2B | gl       | ca       |  32.14 | 54.03 |  60.3  |    0.87 |         0.84 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | ga       | ca       |  28.59 | 61.13 |  55.61 |    0.8  |         0.69 |     0.68 |
| nllb 3.3B              | ga       | ca       |  28.09 | 61.12 |  54.55 |    0.8  |         0.7  |     0.68 |
|  | | | | | | | | |
| SalamandraTA-2B | fr       | ca       |  34.53 | 52.9  |  60.38 |    0.87 |         0.83 |     0.76 |
| nllb 3.3B              | fr       | ca       |  33.61 | 53.57 |  59.73 |    0.87 |         0.84 |     0.76 |
|  | | | | | | | | |
| SalamandraTA-2B | fi       | ca       |  26.71 | 62.19 |  54.09 |    0.86 |         0.8  |     0.71 |
| nllb 3.3B              | fi       | ca       |  26.31 | 62.6  |  54.06 |    0.86 |         0.82 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | eu       | ca       |  27.93 | 60.26 |  55.27 |    0.87 |         0.83 |     0.73 |
| nllb 3.3B              | eu       | ca       |  26.43 | 63.76 |  53.75 |    0.86 |         0.82 |     0.72 |
|  | | | | | | | | |
| SalamandraTA-2B | et       | ca       |  30.03 | 58.25 |  56.88 |    0.86 |         0.79 |     0.72 |
| nllb 3.3B              | et       | ca       |  27.56 | 59.95 |  54.92 |    0.86 |         0.8  |     0.72 |
|  | | | | | | | | |
| nllb 3.3B              | es       | ca       |  25.33 | 64.23 |  55.1  |    0.86 |         0.84 |     0.73 |
| SalamandraTA-2B | es       | ca       |  22.95 | 67.1  |  53.67 |    0.86 |         0.84 |     0.72 |
|  | | | | | | | | |
| SalamandraTA-2B | en       | ca       |  43.55 | 42.62 |  67.03 |    0.88 |         0.85 |     0.78 |
| nllb 3.3B              | en       | ca       |  42.21 | 43.63 |  65.95 |    0.88 |         0.85 |     0.78 |
|  | | | | | | | | |
| SalamandraTA-2B | el       | ca       |  28.52 | 60.34 |  54.99 |    0.85 |         0.83 |     0.71 |
| nllb 3.3B              | el       | ca       |  27.36 | 60.49 |  54.76 |    0.85 |         0.85 |     0.72 |
|  | | | | | | | | |
| SalamandraTA-2B | de       | ca       |  33.07 | 54.46 |  59.06 |    0.85 |         0.84 |     0.74 |
| nllb 3.3B              | de       | ca       |  31.43 | 56.05 |  57.95 |    0.86 |         0.85 |     0.74 |
|  | | | | | | | | |
| SalamandraTA-2B | da       | ca       |  34.6  | 53.22 |  60.43 |    0.86 |         0.83 |     0.75 |
| nllb 3.3B              | da       | ca       |  32.71 | 54.2  |  58.9  |    0.86 |         0.84 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | cs       | ca       |  30.92 | 57.54 |  57.71 |    0.86 |         0.82 |     0.73 |
| nllb 3.3B              | cs       | ca       |  29.02 | 58.78 |  56.44 |    0.86 |         0.83 |     0.73 |
|  | | | | | | | | |
| SalamandraTA-2B | bg       | ca       |  31.68 | 56.32 |  58.61 |    0.85 |         0.84 |     0.73 |
| nllb 3.3B              | bg       | ca       |  29.87 | 57.75 |  57.26 |    0.85 |         0.85 |     0.73 |


</details>

#### Flores200-devtest

|              |   Bleu ↑ |   Ter ↓ |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |   Bleurt ↑ |
|:-----------------------|-------:|------:|-------:|--------:|-------------:|---------:|
| **CA-XX** |  |  |  |  |  |  |
| SalamandraTA-2B  |  **27.09** | **61.06** |  **56.41** |    0.86 |         0.81 |     0.75 |
| nllb 3.3B     |  26.7  | 61.74 |  55.85 |    0.86 |         **0.82** |     **0.76** |
| **XX-CA** |  |  |  |  |  |  |
| SalamandraTA-2B | **31**    | **57.46** |  **57.96** |    0.85 |         0.81 |     0.73 |
| nllb 3.3B    |  30.31 | 58.26 |  57.12 |    0.85 |         **0.82** |     0.73 |

<details>
<summary>Click to show full table CA-XX Flores-devtest</summary>

|              | source   | target   |   Bleu ↑ |   Ter ↓ |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |   Bleurt ↑ |
|:-----------------------|:---------|:---------|-------:|------:|-------:|--------:|-------------:|---------:|
| nllb 3.3B              | ca       | sv       |  32.49 | 55.11 |  59.93 |    0.88 |         0.82 |     0.79 |
| SalamandraTA-2B | ca       | sv       |  30.53 | 56.24 |  58.05 |    0.87 |         0.8  |     0.77 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | sl       |  25.16 | 64.25 |  53.88 |    0.87 |         0.82 |     0.8  |
| nllb 3.3B              | ca       | sl       |  24.64 | 66.02 |  52.71 |    0.88 |         0.82 |     0.81 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | sk       |  25.64 | 63.03 |  53.55 |    0.88 |         0.83 |     0.79 |
| nllb 3.3B              | ca       | sk       |  25.44 | 63.29 |  53.37 |    0.89 |         0.84 |     0.79 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | ro       |  33.21 | 54.27 |  59.53 |    0.89 |         0.84 |     0.8  |
| nllb 3.3B              | ca       | ro       |  31.29 | 56.44 |  58.16 |    0.89 |         0.85 |     0.8  |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | pt       |  37.9  | 48.95 |  63.15 |    0.88 |         0.84 |     0.75 |
| nllb 3.3B              | ca       | pt       |  37.31 | 49.31 |  62.7  |    0.88 |         0.85 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | pl       |  18.62 | 71.88 |  48.44 |    0.88 |         0.83 |     0.77 |
| nllb 3.3B              | ca       | pl       |  18.01 | 72.23 |  48.26 |    0.88 |         0.83 |     0.77 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | nl       |  23.4  | 65.66 |  54.55 |    0.85 |         0.84 |     0.74 |
| nllb 3.3B              | ca       | nl       |  22.99 | 66.68 |  53.95 |    0.85 |         0.84 |     0.75 |
|  | | | | | | | | |
| nllb 3.3B              | ca       | mt       |  24.78 | 59.97 |  59.58 |    0.68 |         0.62 |     0.36 |
| SalamandraTA-2B | ca       | mt       |  24.35 | 60.1  |  60.51 |    0.69 |         0.6  |     0.4  |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | lv       |  20.55 | 71.85 |  50.24 |    0.82 |         0.78 |     0.74 |
| nllb 3.3B              | ca       | lv       |  20.16 | 70.37 |  50.3  |    0.85 |         0.78 |     0.78 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | lt       |  20.37 | 70.15 |  51.61 |    0.88 |         0.79 |     0.82 |
| nllb 3.3B              | ca       | lt       |  19.95 | 70.47 |  52.49 |    0.88 |         0.81 |     0.81 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | it       |  27.18 | 60.37 |  56.65 |    0.88 |         0.85 |     0.77 |
| nllb 3.3B              | ca       | it       |  26.83 | 60.96 |  56.33 |    0.88 |         0.85 |     0.77 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | hu       |  21.76 | 66.96 |  53.45 |    0.86 |         0.81 |     0.85 |
| nllb 3.3B              | ca       | hu       |  20.54 | 68.28 |  52.2  |    0.87 |         0.82 |     0.87 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | hr       |  25.41 | 62.55 |  55.65 |    0.89 |         0.84 |     0.81 |
| nllb 3.3B              | ca       | hr       |  24.01 | 64.39 |  53.95 |    0.89 |         0.84 |     0.82 |
|  | | | | | | | | |
| nllb 3.3B              | ca       | gl       |  32.33 | 52.64 |  59.3  |    0.87 |         0.85 |     0.71 |
| SalamandraTA-2B | ca       | gl       |  31.97 | 52.76 |  59.48 |    0.87 |         0.84 |     0.7  |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | ga       |  23.19 | 66.3  |  51.99 |    0.77 |         0.64 |     0.6  |
| nllb 3.3B              | ca       | ga       |  22.38 | 67.76 |  50.92 |    0.77 |         0.66 |     0.6  |
|  | | | | | | | | |
| nllb 3.3B              | ca       | fr       |  40.82 | 47.72 |  64.82 |    0.86 |         0.85 |     0.74 |
| SalamandraTA-2B | ca       | fr       |  40.35 | 47.79 |  64.56 |    0.86 |         0.84 |     0.73 |
|  | | | | | | | | |
| nllb 3.3B              | ca       | fi       |  18.93 | 70.8  |  53.03 |    0.89 |         0.81 |     0.82 |
| SalamandraTA-2B | ca       | fi       |  18.92 | 70.69 |  52.85 |    0.88 |         0.8  |     0.8  |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | eu       |  18.33 | 72    |  56.65 |    0.86 |         0.81 |     0.79 |
| nllb 3.3B              | ca       | eu       |  12.79 | 78.69 |  50.19 |    0.83 |         0.75 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | et       |  21.45 | 67.08 |  55.01 |    0.88 |         0.8  |     0.79 |
| nllb 3.3B              | ca       | et       |  19.84 | 70.08 |  53.48 |    0.88 |         0.8  |     0.79 |
|  | | | | | | | | |
| nllb 3.3B              | ca       | es       |  25.87 | 59.66 |  54.06 |    0.86 |         0.86 |     0.74 |
| SalamandraTA-2B | ca       | es       |  24.73 | 60.79 |  53.48 |    0.86 |         0.86 |     0.73 |
|  | | | | | | | | |
| nllb 3.3B              | ca       | en       |  48.41 | 38.1  |  71.29 |    0.89 |         0.86 |     0.8  |
| SalamandraTA-2B | ca       | en       |  45.19 | 41.18 |  69.46 |    0.88 |         0.85 |     0.78 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | el       |  22.78 | 63.17 |  49.97 |    0.87 |         0.83 |     0.73 |
| nllb 3.3B              | ca       | el       |  22.59 | 63.8  |  49.33 |    0.87 |         0.83 |     0.73 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | de       |  31.31 | 57.16 |  59.42 |    0.85 |         0.83 |     0.75 |
| nllb 3.3B              | ca       | de       |  31.25 | 57.87 |  59.05 |    0.85 |         0.83 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | da       |  34.83 | 53.16 |  61.44 |    0.88 |         0.82 |     0.75 |
| nllb 3.3B              | ca       | da       |  34.43 | 53.82 |  60.73 |    0.88 |         0.83 |     0.76 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | cs       |  24.98 | 63.45 |  53.11 |    0.89 |         0.84 |     0.77 |
| nllb 3.3B              | ca       | cs       |  24.73 | 63.94 |  52.66 |    0.89 |         0.85 |     0.78 |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | bg       |  32.25 | 55.76 |  59.85 |    0.89 |         0.85 |     0.84 |
| nllb 3.3B              | ca       | bg       |  31.45 | 56.93 |  59.29 |    0.89 |         0.85 |     0.85 |

</details>

<details>
<summary>Click to show full table XX-CA Flores-devtest</summary>

|              | source   | target   |   Bleu ↑ |   Ter ↓ |   ChrF ↑ |   Comet ↑ |   Comet-kiwi ↑ |   Bleurt ↑ |
|:-----------------------|:---------|:---------|-------:|------:|-------:|--------:|-------------:|---------:|
| SalamandraTA-2B | sv       | ca       |  34.4  | 52.6  |  59.96 |    0.86 |         0.82 |     0.73 |
| nllb 3.3B              | sv       | ca       |  33.4  | 53.19 |  59.29 |    0.86 |         0.83 |     0.74 |
|  | | | | | | | | |
| SalamandraTA-2B | sl       | ca       |  29.12 | 59.26 |  56.56 |    0.85 |         0.8  |     0.71 |
| nllb 3.3B              | sl       | ca       |  28.23 | 60.61 |  55.34 |    0.85 |         0.82 |     0.72 |
|  | | | | | | | | |
| SalamandraTA-2B | sk       | ca       |  30.71 | 57.99 |  57.81 |    0.85 |         0.8  |     0.72 |
| nllb 3.3B              | sk       | ca       |  29.79 | 58.99 |  56.61 |    0.85 |         0.82 |     0.73 |
|  | | | | | | | | |
| SalamandraTA-2B | ro       | ca       |  34.79 | 53.37 |  61.22 |    0.87 |         0.83 |     0.75 |
| nllb 3.3B              | ro       | ca       |  33.53 | 54.36 |  60.18 |    0.87 |         0.84 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | pt       | ca       |  36.72 | 50.64 |  62.08 |    0.87 |         0.84 |     0.76 |
| nllb 3.3B              | pt       | ca       |  36.11 | 50.96 |  61.33 |    0.87 |         0.84 |     0.76 |
|  | | | | | | | | |
| SalamandraTA-2B | pl       | ca       |  25.62 | 64.15 |  53.55 |    0.85 |         0.81 |     0.71 |
| nllb 3.3B              | pl       | ca       |  25.14 | 64.43 |  53.09 |    0.85 |         0.83 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | nl       | ca       |  26.17 | 63.88 |  54.01 |    0.84 |         0.83 |     0.7  |
| nllb 3.3B              | nl       | ca       |  25.61 | 64.26 |  53.43 |    0.84 |         0.85 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | mt       | ca       |  36.97 | 50.43 |  62.69 |    0.79 |         0.68 |     0.75 |
| nllb 3.3B              | mt       | ca       |  36.03 | 51.51 |  61.46 |    0.79 |         0.69 |     0.74 |
|  | | | | | | | | |
| SalamandraTA-2B | lv       | ca       |  27.81 | 61.96 |  56.12 |    0.84 |         0.77 |     0.7  |
| nllb 3.3B              | lv       | ca       |  26.83 | 63.33 |  53.93 |    0.84 |         0.78 |     0.7  |
|  | | | | | | | | |
| SalamandraTA-2B | lt       | ca       |  27.29 | 61.15 |  54.14 |    0.84 |         0.75 |     0.7  |
| nllb 3.3B              | lt       | ca       |  26.13 | 62.2  |  53.17 |    0.84 |         0.77 |     0.7  |
|  | | | | | | | | |
| SalamandraTA-2B | it       | ca       |  29.12 | 60.95 |  57.85 |    0.87 |         0.85 |     0.74 |
| nllb 3.3B              | it       | ca       |  28.06 | 61.81 |  57.06 |    0.87 |         0.85 |     0.74 |
|  | | | | | | | | |
| SalamandraTA-2B | hu       | ca       |  28.21 | 60.54 |  55.38 |    0.85 |         0.81 |     0.71 |
| nllb 3.3B              | hu       | ca       |  27.58 | 60.77 |  54.76 |    0.85 |         0.83 |     0.72 |
|  | | | | | | | | |
| SalamandraTA-2B | hr       | ca       |  30.13 | 57.59 |  57.25 |    0.86 |         0.81 |     0.72 |
| nllb 3.3B              | hr       | ca       |  29.15 | 62.59 |  56.04 |    0.86 |         0.83 |     0.72 |
|  | | | | | | | | |
| nllb 3.3B              | gl       | ca       |  34.23 | 53.25 |  61.28 |    0.88 |         0.85 |     0.76 |
| SalamandraTA-2B | gl       | ca       |  32.09 | 54.77 |  60.42 |    0.87 |         0.84 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | ga       | ca       |  28.11 | 62.93 |  55.28 |    0.8  |         0.68 |     0.67 |
| nllb 3.3B              | ga       | ca       |  27.73 | 62.91 |  53.93 |    0.79 |         0.69 |     0.66 |
|  | | | | | | | | |
| SalamandraTA-2B | fr       | ca       |  35.87 | 52.28 |  61.2  |    0.87 |         0.83 |     0.75 |
| nllb 3.3B              | fr       | ca       |  34.42 | 53.05 |  60.31 |    0.87 |         0.84 |     0.76 |
|  | | | | | | | | |
| SalamandraTA-2B | fi       | ca       |  27.35 | 61.33 |  54.95 |    0.86 |         0.8  |     0.7  |
| nllb 3.3B              | fi       | ca       |  27.04 | 62.35 |  54.48 |    0.86 |         0.81 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | eu       | ca       |  28.02 | 60.45 |  55.44 |    0.87 |         0.82 |     0.73 |
| nllb 3.3B              | eu       | ca       |  26.68 | 62.62 |  54.22 |    0.86 |         0.82 |     0.71 |
|  | | | | | | | | |
| SalamandraTA-2B | et       | ca       |  29.84 | 58.79 |  56.74 |    0.86 |         0.78 |     0.72 |
| nllb 3.3B              | et       | ca       |  28.43 | 60.01 |  55.48 |    0.86 |         0.79 |     0.72 |
|  | | | | | | | | |
| nllb 3.3B              | es       | ca       |  25.64 | 64.21 |  55.18 |    0.87 |         0.85 |     0.73 |
| SalamandraTA-2B | es       | ca       |  23.47 | 66.71 |  54.05 |    0.86 |         0.84 |     0.72 |
|  | | | | | | | | |
| SalamandraTA-2B | en       | ca       |  43.98 | 42.35 |  67.3  |    0.87 |         0.85 |     0.77 |
| nllb 3.3B              | en       | ca       |  43.24 | 43.37 |  66.58 |    0.88 |         0.85 |     0.78 |
|  | | | | | | | | |
| SalamandraTA-2B | el       | ca       |  28.91 | 59.86 |  55.26 |    0.85 |         0.83 |     0.71 |
| nllb 3.3B              | el       | ca       |  28.46 | 60.28 |  55.13 |    0.85 |         0.84 |     0.72 |
|  | | | | | | | | |
| SalamandraTA-2B | de       | ca       |  33.71 | 54.06 |  59.79 |    0.86 |         0.83 |     0.74 |
| nllb 3.3B              | de       | ca       |  32.71 | 54.91 |  58.91 |    0.86 |         0.84 |     0.74 |
|  | | | | | | | | |
| SalamandraTA-2B | da       | ca       |  35.14 | 52.51 |  60.81 |    0.86 |         0.82 |     0.74 |
| nllb 3.3B              | da       | ca       |  34.03 | 53.41 |  59.46 |    0.86 |         0.83 |     0.75 |
|  | | | | | | | | |
| SalamandraTA-2B | cs       | ca       |  31.12 | 56.71 |  58.22 |    0.86 |         0.81 |     0.73 |
| nllb 3.3B              | cs       | ca       |  29.26 | 58.38 |  56.53 |    0.86 |         0.82 |     0.73 |
|  | | | | | | | | |
| SalamandraTA-2B | bg       | ca       |  31.33 | 56.72 |  58.75 |    0.85 |         0.84 |     0.73 |
| nllb 3.3B              | bg       | ca       |  30.5  | 57.03 |  57.92 |    0.85 |         0.85 |     0.73 |

</details>

## Evaluation Aranese, Aragonese, Asturian

Using [MT Lens](https://github.com/langtech-bsc/mt-evaluation) we evaluate Spanish-Asturian (ast), Spanish-Aragonese (an) and Spanish-Aranese (arn) on BLEU and ChrF scores on the [Flores+ dev](https://github.com/openlanguagedata/flores) evaluation dataset. We also report BLEU and ChrF scores for catalan directions.

### Asturian Flores+ dev

Below are the evaluation results compared to [Apertium](https://www.apertium.org/), [Eslema](https://eslema.it.uniovi.es/) and NLLB ([Costa-jussà et al., 2022](https://arxiv.org/abs/2207.04672)).

|             | source   | target   |   Bleu |  ChrF |
|:-----------------------|:---------|:---------|------:|-------:|
| nllb 3.3B              | es       | ast      |  **18.78** |  50.5  |
| Eslema | es       | ast      |  17.30 |  **50.77** |
| nllb 600M | es       | ast      |  17.23 |  49.72 |
| SalamandraTA-2B | es       | ast      |  17.11 |  49.49 |
| Apertium | es       | ast      |  16.66 |  50.57 |
|  | | | | | | | | |
|  | | | | | | | | |
| nllb 3.3B              | ca       | ast      |  **25.87** |  54.9  |
| SalamandraTA-2B | ca       | ast      |  25.17 |  **55.17** |


### Aragonese Flores+ dev

Below are the evaluation results on compared to [Apertium](https://www.apertium.org/), [Softcatalà](https://www.softcatala.org/traductor/) and [Traduze](https://traduze.aragon.es).

|             | source   | target   |   Bleu |    ChrF |
|:-----------------------|:---------|:---------|-------:|-------:|
| Apertium | es       | an      |  **65.34** |  **82.00** |
| Softcatalà | es       | an      |  50.21 |  73.97 |
| SalamandraTA-2B | es       | an      |  49.13 |  74.22 |
| Traduze | es       | an      |  37.43 |  69.51 |
|  | | | | | | | | |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | an      |  17.06 |  49.12 |


### Aranese Flores+ dev

Below are the evaluation results on compared to [Apertium](https://www.apertium.org/) and [Softcatalà](https://www.softcatala.org/traductor/).


|             | source   | target   |   Bleu |    ChrF |
|:-----------------------|:---------|:---------|-------:|-------:|
| Apertium | es       | arn      |  **48.96** |  **72.63** |
| Softcatalà | es       | arn      |  34.43 |  58.61 |
| SalamandraTA-2B | es       | arn      |  34.35 |  57.78 |
|  | | | | | | | | |
|  | | | | | | | | |
| SalamandraTA-2B | ca       | arn      |  21.95 |  48.67 |



## Ethical Considerations and Limitations

Detailed information on the work done to examine the presence of unwanted social and cognitive biases in the base model can be found 
at [Salamandra-2B model card](https://huggingface.co/BSC-LT/salamandra-2b).
With regard to MT models, no specific analysis has yet been carried out in order to evaluate potential biases or limitations in translation 
accuracy across different languages, dialects, or domains. However, we recognize the importance of identifying and addressing any harmful stereotypes, 
cultural inaccuracies, or systematic performance discrepancies that may arise in Machine Translation. As such, we plan to perform more analyses as soon 
as we have implemented the necessary metrics and methods within our evaluation framework [MT Lens](https://github.com/langtech-bsc/mt-evaluation).


## Additional information

### Author
The Language Technologies Unit from Barcelona Supercomputing Center.

### Contact
For further information, please send an email to <[email protected]>.

### Copyright
Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center.

### Funding
This work has been promoted and financed by the Government of Catalonia through the [Aina Project](https://projecteaina.cat/).

This work is funded by the _Ministerio para la Transformación Digital y de la Función Pública_ - Funded by EU – NextGenerationEU 
within the framework of [ILENIA Project](https://proyectoilenia.es/) with reference 2022/TL22/00215337.


### Disclaimer
Be aware that the model may contain biases or other unintended distortions. 
When third parties deploy systems or provide services based on this model, or use the model themselves, 
they bear the responsibility for mitigating any associated risks and ensuring compliance with applicable regulations, 
including those governing the use of Artificial Intelligence.

The Barcelona Supercomputing Center, as the owner and creator of the model, shall not be held liable for any outcomes resulting from third-party use.

### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)