Aviral2412's picture
End of training
fa38930 verified
---
base_model: Aviral2412/mini_model
tags:
- generated_from_trainer
datasets:
- common_voice_1_0
metrics:
- wer
model-index:
- name: fineturning-with-pretraining
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_1_0
type: common_voice_1_0
config: en
split: validation
args: en
metrics:
- name: Wer
type: wer
value: 1.0010991853097115
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fineturning-with-pretraining
This model is a fine-tuned version of [Aviral2412/mini_model](https://huggingface.co/Aviral2412/mini_model) on the common_voice_1_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3739
- Wer: 1.0011
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.3381 | 2.15 | 500 | 2.5389 | 1.0011 |
| 2.4622 | 4.29 | 1000 | 2.4761 | 1.0011 |
| 2.4477 | 6.44 | 1500 | 2.5567 | 1.0011 |
| 2.4325 | 8.58 | 2000 | 2.4334 | 1.0011 |
| 2.4205 | 10.73 | 2500 | 2.4067 | 1.0011 |
| 2.3995 | 12.88 | 3000 | 2.3828 | 1.0011 |
| 2.3869 | 15.02 | 3500 | 2.3752 | 1.0011 |
| 2.3857 | 17.17 | 4000 | 2.3759 | 1.0011 |
| 2.3717 | 19.31 | 4500 | 2.3684 | 1.0011 |
| 2.3625 | 21.46 | 5000 | 2.3601 | 1.0011 |
| 2.3648 | 23.61 | 5500 | 2.3739 | 1.0011 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2