|
--- |
|
base_model: Aviral2412/mini_model |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_1_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: fineturning-with-pretraining |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_1_0 |
|
type: common_voice_1_0 |
|
config: en |
|
split: validation |
|
args: en |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 1.0010991853097115 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fineturning-with-pretraining |
|
|
|
This model is a fine-tuned version of [Aviral2412/mini_model](https://huggingface.co/Aviral2412/mini_model) on the common_voice_1_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3739 |
|
- Wer: 1.0011 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 25 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 4.3381 | 2.15 | 500 | 2.5389 | 1.0011 | |
|
| 2.4622 | 4.29 | 1000 | 2.4761 | 1.0011 | |
|
| 2.4477 | 6.44 | 1500 | 2.5567 | 1.0011 | |
|
| 2.4325 | 8.58 | 2000 | 2.4334 | 1.0011 | |
|
| 2.4205 | 10.73 | 2500 | 2.4067 | 1.0011 | |
|
| 2.3995 | 12.88 | 3000 | 2.3828 | 1.0011 | |
|
| 2.3869 | 15.02 | 3500 | 2.3752 | 1.0011 | |
|
| 2.3857 | 17.17 | 4000 | 2.3759 | 1.0011 | |
|
| 2.3717 | 19.31 | 4500 | 2.3684 | 1.0011 | |
|
| 2.3625 | 21.46 | 5000 | 2.3601 | 1.0011 | |
|
| 2.3648 | 23.61 | 5500 | 2.3739 | 1.0011 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|