Aviral2412's picture
End of training
fa38930 verified
metadata
base_model: Aviral2412/mini_model
tags:
  - generated_from_trainer
datasets:
  - common_voice_1_0
metrics:
  - wer
model-index:
  - name: fineturning-with-pretraining
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_1_0
          type: common_voice_1_0
          config: en
          split: validation
          args: en
        metrics:
          - name: Wer
            type: wer
            value: 1.0010991853097115

fineturning-with-pretraining

This model is a fine-tuned version of Aviral2412/mini_model on the common_voice_1_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3739
  • Wer: 1.0011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.3381 2.15 500 2.5389 1.0011
2.4622 4.29 1000 2.4761 1.0011
2.4477 6.44 1500 2.5567 1.0011
2.4325 8.58 2000 2.4334 1.0011
2.4205 10.73 2500 2.4067 1.0011
2.3995 12.88 3000 2.3828 1.0011
2.3869 15.02 3500 2.3752 1.0011
2.3857 17.17 4000 2.3759 1.0011
2.3717 19.31 4500 2.3684 1.0011
2.3625 21.46 5000 2.3601 1.0011
2.3648 23.61 5500 2.3739 1.0011

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2