Fischerboot's picture
Update README.md
14ecbc6 verified
metadata
base_model:
  - meta-llama/Llama-3.2-3B-Instruct
library_name: transformers
tags:
  - mergekit
  - merge
license: llama3.2
datasets:
  - Fischerboot/small-boi-thinkin
language:
  - en

Llama-3.2-3B-SmartBoi

This is a finetune to include 'thinking' tags (plus others).

It makes this model a lot smarter (at least in maths), alltho the tags are only used in english somehow.

This model has not been made uncensored.

maths.jpg

Prompt Template

This Model uses Llama-3 Chat:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

This is text

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Finetune Info:

The following YAML configuration was used to finetune this model:

base_model: alpindale/Llama-3.2-3B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

chat_template: llama3
datasets:
  - path: Fischerboot/small-boi-thinkin
    type: sharegpt
    conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/yuh

adapter: qlora
lora_model_dir:

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 8.0
loss_watchdog_patience: 3

eval_sample_packing: false
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|begin_of_text|>"
  eos_token: "<|end_of_text|>"
  pad_token: "<|end_of_text|>"

Training results:

Training Loss Epoch Step Validation Loss
1.5032 0.0000 1 1.6556
1.2011 0.5000 10553 0.6682