File size: 2,569 Bytes
9707629 f519f8c 9707629 e668a48 9707629 14ecbc6 160f30f 9707629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
base_model:
- meta-llama/Llama-3.2-3B-Instruct
library_name: transformers
tags:
- mergekit
- merge
license: llama3.2
datasets:
- Fischerboot/small-boi-thinkin
language:
- en
---
# Llama-3.2-3B-SmartBoi
This is a finetune to include 'thinking' tags (plus others).
It makes this model a lot smarter (at least in maths), alltho the tags are only used in english somehow.
This model has not been made uncensored.
<img src="https://huggingface.co/Aculi/Llama-3.2-3B-SmartBoi/resolve/main/math.jpg" alt="maths.jpg" width="600" />
## Prompt Template
This Model uses Llama-3 Chat:
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
This is text
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Finetune Info:
The following YAML configuration was used to finetune this model:
```yaml
base_model: alpindale/Llama-3.2-3B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: llama3
datasets:
- path: Fischerboot/small-boi-thinkin
type: sharegpt
conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/yuh
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 8.0
loss_watchdog_patience: 3
eval_sample_packing: false
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|begin_of_text|>"
eos_token: "<|end_of_text|>"
pad_token: "<|end_of_text|>"
```
### Training results:
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 1.5032 | 0.0000 | 1 | 1.6556 |
| 1.2011 | 0.5000 | 10553 | 0.6682 | |