metadata
license: other
base_model: stabilityai/stable-diffusion-3-medium-diffusers
tags:
- sd3
- sd3-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: A design of a cute pokemon, on a white background
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
sd3-lora-training-v2
This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3-medium-diffusers.
The main validation prompt used during training was:
A design of a cute pokemon, on a white background
Validation settings
- CFG:
5.0
- CFG Rescale:
0.0
- Steps:
30
- Sampler:
None
- Seed:
42
- Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 85
- Training steps: 2812
- Learning rate: 0.0001
- Effective batch size: 2
- Micro-batch size: 1
- Gradient accumulation steps: 2
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: bf16
- Quantised: No
- Xformers: Not used
- LoRA Rank: 16
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
Datasets
Pal_BLIP
- Repeats: 0
- Total number of images: 66
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-3-medium-diffusers'
adapter_id = 'zwloong/sd3-lora-training-v2'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "A design of a cute pokemon, on a white background"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=5.0,
).images[0]
image.save("output.png", format="PNG")