|
--- |
|
language: |
|
- gl |
|
license: apache-2.0 |
|
base_model: openai/whisper-large |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_13_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Large Galician |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_13_0 gl |
|
type: mozilla-foundation/common_voice_13_0 |
|
config: gl |
|
split: validation |
|
args: gl |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 6.500536091031715 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Large Galician |
|
|
|
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the mozilla-foundation/common_voice_13_0 gl dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3219 |
|
- Wer: 6.5005 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 20000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:------:| |
|
| 0.0476 | 5.83 | 1000 | 0.1829 | 6.3535 | |
|
| 0.008 | 11.66 | 2000 | 0.2224 | 6.2705 | |
|
| 0.0043 | 17.49 | 3000 | 0.2360 | 6.3397 | |
|
| 0.0029 | 23.32 | 4000 | 0.2544 | 6.5386 | |
|
| 0.0036 | 29.15 | 5000 | 0.2552 | 6.6977 | |
|
| 0.0026 | 34.99 | 6000 | 0.2737 | 6.8568 | |
|
| 0.0009 | 40.82 | 7000 | 0.2734 | 6.6320 | |
|
| 0.0009 | 46.65 | 8000 | 0.2769 | 6.8187 | |
|
| 0.0006 | 52.48 | 9000 | 0.2832 | 6.6164 | |
|
| 0.0013 | 58.31 | 10000 | 0.2883 | 7.0176 | |
|
| 0.0005 | 64.14 | 11000 | 0.2972 | 6.8983 | |
|
| 0.0006 | 69.97 | 12000 | 0.2964 | 6.6735 | |
|
| 0.0003 | 75.8 | 13000 | 0.3042 | 6.7392 | |
|
| 0.0002 | 81.63 | 14000 | 0.3084 | 6.7426 | |
|
| 0.0001 | 87.46 | 15000 | 0.3145 | 6.6631 | |
|
| 0.0002 | 93.29 | 16000 | 0.3091 | 6.6666 | |
|
| 0.0001 | 99.13 | 17000 | 0.3170 | 6.8758 | |
|
| 0.0002 | 104.96 | 18000 | 0.3223 | 6.6337 | |
|
| 0.0 | 110.79 | 19000 | 0.3219 | 6.4971 | |
|
| 0.0001 | 116.62 | 20000 | 0.3219 | 6.5005 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|