Whisper Large Spanish

This model is a fine-tuned version of openai/whisper-large on the mozilla-foundation/common_voice_13_0 es dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2663
  • Wer: 5.1265

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0834 2.0 1000 0.1862 6.3852
0.0871 4.0 2000 0.1777 5.9175
0.039 6.0 3000 0.1780 5.7423
0.0265 8.0 4000 0.2121 5.7744
0.0059 10.0 5000 0.2219 5.8097
0.0855 12.01 6000 0.1839 5.9778
0.0037 14.01 7000 0.2273 5.8565
0.0293 16.01 8000 0.1965 5.8078
0.1174 18.01 9000 0.1984 5.8893
0.0355 20.01 10000 0.2136 5.8662
0.0279 22.01 11000 0.1882 5.4960
0.0043 24.01 12000 0.2444 5.3356
0.0302 26.01 13000 0.2223 5.4620
0.0011 28.01 14000 0.2603 5.5608
0.001 30.01 15000 0.2452 5.3087
0.0003 32.01 16000 0.2573 5.3523
0.0004 34.02 17000 0.2690 5.2952
0.0013 36.02 18000 0.2373 5.1438
0.0004 38.02 19000 0.2618 5.1361
0.0004 40.02 20000 0.2663 5.1265

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for zuazo/whisper-large-es

Finetuned
(63)
this model
Finetunes
1 model

Dataset used to train zuazo/whisper-large-es

Evaluation results