swin-tiny-patch4-window7-224-finetuned-fluro_cls

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.67 1 0.7112 0.5238
No log 1.67 2 0.5591 0.8571
0.811 2.67 3 0.3781 0.9524
0.811 3.67 4 0.1995 1.0
0.811 4.67 5 0.1215 1.0
0.3531 5.67 6 0.0578 1.0
0.3531 6.67 7 0.0195 1.0
0.3531 7.67 8 0.0072 1.0
0.0618 8.67 9 0.0030 1.0
0.0618 9.67 10 0.0012 1.0
0.0618 10.67 11 0.0005 1.0
0.0079 11.67 12 0.0003 1.0
0.0079 12.67 13 0.0001 1.0
0.0079 13.67 14 0.0001 1.0
0.0051 14.67 15 0.0001 1.0
0.0051 15.67 16 0.0000 1.0
0.0051 16.67 17 0.0000 1.0
0.0017 17.67 18 0.0000 1.0
0.0017 18.67 19 0.0000 1.0
0.0017 19.67 20 0.0000 1.0
0.0004 20.67 21 0.0000 1.0
0.0004 21.67 22 0.0000 1.0
0.0004 22.67 23 0.0000 1.0
0.0022 23.67 24 0.0000 1.0
0.0022 24.67 25 0.0000 1.0
0.0022 25.67 26 0.0000 1.0
0.001 26.67 27 0.0000 1.0
0.001 27.67 28 0.0000 1.0
0.001 28.67 29 0.0000 1.0
0.0013 29.67 30 0.0000 1.0

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.10.2+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.