Model Description

t5-small from google t5 repo fine-tuned on russian-bashkir corpora

Metrics

BLEU: 0.3018

chrF: 0.5478

Run inference

Use the example below*:

from typing import List, Union

import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer


@torch.inference_mode
def infer(
        model: T5ForConditionalGeneration,
        tokenizer: Union[T5TokenizerFast, T5Tokenizer],
        device: str,
        texts: List[str],
        target_language: str,
        max_length: int = 256
    ) -> List[str]:
    assert target_language in ("русский", "башкирский"), "target language must be in (русский, башкирский)"
    if target_language == "русский":
        prefix = "башкирский-русский: "
    else:
        prefix = "русский-башкирский: "
    text_with_prefix = [
        prefix + (text[0].upper() + text[1:] + "." if not text.endswith(".") else text[0].upper() + text[1:]) \
        for text in texts
        ]
    inputs = tokenizer(
                text_with_prefix,
                padding="max_length",
                max_length=256,
                truncation=True,
                return_tensors="pt"
                )
    model.eval()
    outputs = model.generate(inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device))
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)


if __name__ == "__main__":
    tokenizer = T5Tokenizer.from_pretrained("zhursvlevy/t5-small-bashkir-russian")
    model = T5ForConditionalGeneration.from_pretrained("zhursvlevy/t5-small-bashkir-russian")
  
    input_text = "Тормоштоң, Ғаләмдең һәм бөтә нәмәнең төп һорауына яуап"
    output_text = "Ответ на главный вопрос жизни, Вселенной и всего такого"
    
    infer(model, tokenizer, "cpu", [input_text], "русский")

*The widget may not work correctly due to the default pipeline.

Downloads last month
18
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train zhursvlevy/t5-small-bashkir-russian