bi-cse / README.md
zhou-xl's picture
Update README.md
cac188d verified
metadata
tags:
  - mteb
model-index:
  - name: student
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 42.01013972878128
          - type: cos_sim_spearman
            value: 43.4493974759166
          - type: euclidean_pearson
            value: 41.9332741602486
          - type: euclidean_spearman
            value: 43.4565546063627
          - type: manhattan_pearson
            value: 41.9297043571561
          - type: manhattan_spearman
            value: 43.44509515848548
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 47.48357848831134
          - type: cos_sim_spearman
            value: 48.0096502737997
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 70.06631340065852
          - type: cos_sim_spearman
            value: 70.56425845690775
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 63.30619967351764
          - type: cos_sim_spearman
            value: 65.57791727146774
          - type: euclidean_pearson
            value: 64.41653053459552
          - type: euclidean_spearman
            value: 65.60244311139472
          - type: manhattan_pearson
            value: 64.37518298990945
          - type: manhattan_spearman
            value: 65.56983205786409
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (zh-en)
          config: zh-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 98.42022116903634
          - type: f1
            value: 98.38511497279269
          - type: precision
            value: 98.36756187467088
          - type: recall
            value: 98.42022116903634
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 71.3095132213625
          - type: cos_sim_spearman
            value: 75.55615792829865
          - type: euclidean_pearson
            value: 74.37147909656647
          - type: euclidean_spearman
            value: 75.54784459711308
          - type: manhattan_pearson
            value: 74.29759624788565
          - type: manhattan_spearman
            value: 75.49037321257157
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 42.821882144591406
          - type: cos_sim_spearman
            value: 47.616725737501724
          - type: euclidean_pearson
            value: 46.991556480777675
          - type: euclidean_spearman
            value: 47.624128831089685
          - type: manhattan_pearson
            value: 46.83451589707148
          - type: manhattan_spearman
            value: 47.47345373932411
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 39.48274306266568
          - type: cos_sim_spearman
            value: 40.43254828668596
          - type: euclidean_pearson
            value: 39.121198397707374
          - type: euclidean_spearman
            value: 40.47848829374869
          - type: manhattan_pearson
            value: 39.07044184765326
          - type: manhattan_spearman
            value: 40.41344728276686
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 81.60488630930521
          - type: cos_sim_spearman
            value: 79.04311658059933
          - type: euclidean_pearson
            value: 78.95158745413384
          - type: euclidean_spearman
            value: 78.99206332696008
          - type: manhattan_pearson
            value: 78.93956396383128
          - type: manhattan_spearman
            value: 78.94138617747835
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 85.50516203958485
          - type: cos_sim_spearman
            value: 78.39314964894021
          - type: euclidean_pearson
            value: 83.03876157406377
          - type: euclidean_spearman
            value: 78.43128279495177
          - type: manhattan_pearson
            value: 83.00734833664097
          - type: manhattan_spearman
            value: 78.33755694741544
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 82.52249245791886
          - type: cos_sim_spearman
            value: 83.71503684399218
          - type: euclidean_pearson
            value: 82.83033355582003
          - type: euclidean_spearman
            value: 83.6956570069731
          - type: manhattan_pearson
            value: 82.74415910929217
          - type: manhattan_spearman
            value: 83.58167243171766
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 81.00915974657362
          - type: cos_sim_spearman
            value: 79.19276300509559
          - type: euclidean_pearson
            value: 80.17657754340593
          - type: euclidean_spearman
            value: 79.19425018312683
          - type: manhattan_pearson
            value: 80.04321829436775
          - type: manhattan_spearman
            value: 79.0458687679498
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 84.99452083625762
          - type: cos_sim_spearman
            value: 85.57952966879047
          - type: euclidean_pearson
            value: 85.14932626009531
          - type: euclidean_spearman
            value: 85.59697259700918
          - type: manhattan_pearson
            value: 85.11214415799934
          - type: manhattan_spearman
            value: 85.54871088485925
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 80.33170312674788
          - type: cos_sim_spearman
            value: 82.3316942254394
          - type: euclidean_pearson
            value: 82.00948134099386
          - type: euclidean_spearman
            value: 82.32475375375705
          - type: manhattan_pearson
            value: 81.94953036676401
          - type: manhattan_spearman
            value: 82.26329177825353
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 87.60426458021554
          - type: cos_sim_spearman
            value: 87.89776827373123
          - type: euclidean_pearson
            value: 88.19401282603557
          - type: euclidean_spearman
            value: 87.90080500648473
          - type: manhattan_pearson
            value: 88.39099772653003
          - type: manhattan_spearman
            value: 88.03019288557621
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 60.38925903960008
          - type: cos_sim_spearman
            value: 63.91952542589123
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 61.51076949065575
          - type: cos_sim_spearman
            value: 67.24427398434739
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
          config: zh-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 70.08946142653247
          - type: cos_sim_spearman
            value: 70.01280058113731
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 75.52896222293855
          - type: cos_sim_spearman
            value: 75.38140772041567
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 85.09649790270096
          - type: cos_sim_spearman
            value: 85.99053080606336
          - type: euclidean_pearson
            value: 85.9554143396231
          - type: euclidean_spearman
            value: 85.9826211701156
          - type: manhattan_pearson
            value: 85.91951912635923
          - type: manhattan_spearman
            value: 85.90751385480418
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cmn-eng)
          config: cmn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.3
          - type: f1
            value: 95.15
          - type: precision
            value: 94.58333333333333
          - type: recall
            value: 96.3

Use Chinese and English STS and NLI corpora to conduct contrastive learning finetuning on xlmr

Using HuggingFace Transformers

from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('zhou-xl/bi-cse')
model = AutoModel.from_pretrained('zhou-xl/bi-cse')
model.eval()

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)
    # Perform pooling. In this case, cls pooling.
    sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)