DeQA-Score-Mix3
DeQA-Score ( project page / codes / paper ) model weights fully fine-tuned on KonIQ, SPAQ, and KADID datasets.
This work is under our DepictQA project.
Quick Start with AutoModel
For this image, start an AutoModel scorer with transformers==4.36.1
:
import requests
import torch
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"zhiyuanyou/DeQA-Score-Mix3", trust_remote_code=True, torch_dtype=torch.float16, device_map="auto"
)
from PIL import Image
# The inputs should be a list of multiple PIL images
score = model.score(
[Image.open(requests.get(
"https://raw.githubusercontent.com/zhiyuanyou/DeQA-Score/main/fig/singapore_flyer.jpg", stream=True
).raw)]
)
The "score" result should be 1.9404 (in range [1,5], higher is better).
Non-reference IQA Results (PLCC / SRCC)
Dataset | KonIQ | SPAQ | KADID | PIPAL | LIVE-Wild | AGIQA | TID2013 | CSIQ |
---|---|---|---|---|---|---|---|---|
Q-Align (Baseline) | 0.945 / 0.938 | 0.933 / 0.931 | 0.935 / 0.934 | 0.409 / 0.420 | 0.887 / 0.883 | 0.788 / 0.733 | 0.829 / 0.808 | 0.876 / 0.845 |
DeQA-Score (Ours) | 0.956 / 0.943 | 0.938 / 0.934 | 0.955 / 0.953 | 0.495 / 0.496 | 0.900 / 0.887 | 0.808 / 0.745 | 0.852 / 0.820 | 0.900 / 0.857 |
If you find our work useful for your research and applications, please cite using the BibTeX:
@article{deqa_score,
title={Teaching Large Language Models to Regress Accurate Image Quality Scores using Score Distribution},
author={You, Zhiyuan and Cai, Xin and Gu, Jinjin and Xue, Tianfan and Dong, Chao},
journal={arXiv preprint arXiv:2501.11561},
year={2025},
}
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for zhiyuanyou/DeQA-Score-Mix3
Base model
MAGAer13/mplug-owl2-llama2-7b