bert_finetunning
This model is a fine-tuned version of bert-base-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.4018
- Accuracy: 0.8260
- F1: 0.8786
- Combined Score: 0.8523
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
Training results
Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.9.0
- Datasets 1.16.1
- Tokenizers 0.10.3
- Downloads last month
- 4
Dataset used to train zhaoyang/BertFinetuning
Evaluation results
- Accuracy on GLUE MRPCself-reported0.826
- F1 on GLUE MRPCself-reported0.879