llama_FT
This model is a fine-tuned version of meta-llama/Llama-2-13b-chat-hf .
Intended uses & limitations
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM,AutoTokenizer
Loading Tokenizer
model_id = "meta-llama/Llama-2-13b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
Loading Model
config = PeftConfig.from_pretrained("zera09/llama_FT")
base_model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True, device_map='cuda')
model = PeftModel.from_pretrained(base_model, "zera09/llama_FT")
Template for inference
template = """### Instruction
Given this context: {context} and price:{price}output onle one decision from the square bracket [buy,sell,hold] and provide reasoning om why.
### Response:
Decision:
Reasonong:
```"""
from transformers import set_seed
def gen(text):
toks = tokenizer(text, return_tensors="pt").to("cuda")
set_seed(32)
model.eval()
with torch.no_grad():
out = model.generate(
**toks,
max_new_tokens=350,
top_k=5,
do_sample=True,
)
return tokenizer.decode(
out[0][len(toks["input_ids"][0]) :], skip_special_tokens=True
)
Runign Inference On single text
context = "The global recloser control market is expected to grow significantly, driven by increasing demand for power quality and reliability, especially in the electric segment and emerging economies like China. The positive score for this news is 1.1491235518690246e-08. The neutral score for this news is 0.9999998807907104. The negative score for this news is 6.358970239261907e-08"
price = str(12.1)
print(gen(template.format(context=news,price=price)).split("```"))
For multiple text
import pandas as pd
data = panda.read_pickle('./DRIV_train.pkl')
data = pd.DataFrame(data).T
model.eval()
answer_list = []
for idx,row in ans_sum.iterrows():
toks = tokenizer(template.format(context=row['news']['DRIV'][0],price=str(row['price']['DRIV'][0]))), return_tensors="pt").to("cuda")
with torch.no_grad():
out = model.generate(
**toks,
max_new_tokens=350,
top_k=5,
do_sample=True,
)
ans_list.append(tokenizer.decode(
out[0][len(toks["input_ids"][0]) :], skip_special_tokens=True
)
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 12
- mixed_precision_training: Native AMP
Framework versions
- PEFT 0.8.2
- Transformers 4.41.1
- Pytorch 1.13.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for zera09/llama_FT
Base model
meta-llama/Llama-2-13b-chat-hf