test-ner

This model is a fine-tuned version of bert-base-uncased on ktgiahieu/maccrobat2018_2020 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3155
  • Precision: 0.9157
  • Recall: 0.9323
  • F1: 0.9239
  • Accuracy: 0.9530

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0316 1.25 100 0.3050 0.8799 0.9250 0.9019 0.9466
0.0296 2.5 200 0.2946 0.8904 0.9242 0.9070 0.9497
0.0258 3.75 300 0.2883 0.9006 0.9196 0.9100 0.9496
0.0227 5.0 400 0.2905 0.8888 0.9279 0.9079 0.9496
0.0183 6.25 500 0.2950 0.8864 0.9319 0.9086 0.9496
0.0161 7.5 600 0.2931 0.8914 0.9273 0.9090 0.9503
0.0153 8.75 700 0.3069 0.8947 0.9309 0.9124 0.9502
0.0131 10.0 800 0.3032 0.8927 0.9261 0.9091 0.9497
0.0117 11.25 900 0.2935 0.9035 0.9295 0.9163 0.9526
0.0111 12.5 1000 0.3117 0.8993 0.9290 0.9139 0.9509
0.0089 13.75 1100 0.3247 0.8902 0.9293 0.9094 0.9502
0.0115 15.0 1200 0.3121 0.8875 0.9383 0.9122 0.9491
0.0088 16.25 1300 0.3038 0.9058 0.9301 0.9178 0.9523
0.0083 17.5 1400 0.3237 0.8928 0.9336 0.9127 0.9513
0.0095 18.75 1500 0.3223 0.8885 0.9389 0.9130 0.9493
0.0078 20.0 1600 0.3335 0.8898 0.9380 0.9133 0.9505
0.0088 21.25 1700 0.3004 0.9070 0.9332 0.9199 0.9534
0.0068 22.5 1800 0.3424 0.8913 0.9350 0.9126 0.9497
0.0065 23.75 1900 0.3150 0.9034 0.9338 0.9184 0.9538
0.011 25.0 2000 0.3097 0.9044 0.9341 0.9190 0.9523
0.0082 26.25 2100 0.3101 0.9057 0.9301 0.9177 0.9527
0.0108 27.5 2200 0.3143 0.9083 0.9311 0.9196 0.9525
0.0081 28.75 2300 0.3211 0.9011 0.9371 0.9188 0.9525
0.0089 30.0 2400 0.3357 0.8996 0.9362 0.9175 0.9509
0.0074 31.25 2500 0.3097 0.9079 0.9305 0.9190 0.9517
0.0077 32.5 2600 0.3253 0.9032 0.9373 0.9199 0.9511
0.0076 33.75 2700 0.3252 0.9056 0.9337 0.9194 0.9526
0.0058 35.0 2800 0.3422 0.8981 0.9382 0.9177 0.9512
0.0067 36.25 2900 0.3323 0.9074 0.9375 0.9222 0.9532
0.0063 37.5 3000 0.3390 0.9066 0.9342 0.9202 0.9521
0.0053 38.75 3100 0.3241 0.9095 0.9374 0.9232 0.9537
0.0054 40.0 3200 0.3211 0.9017 0.9401 0.9205 0.9534
0.0051 41.25 3300 0.3339 0.8931 0.9407 0.9163 0.9500
0.0064 42.5 3400 0.3514 0.8977 0.9373 0.9170 0.9517
0.0056 43.75 3500 0.3327 0.9069 0.9371 0.9218 0.9528
0.0053 45.0 3600 0.3344 0.9034 0.9356 0.9192 0.9525
0.0048 46.25 3700 0.3203 0.9171 0.9355 0.9262 0.9542
0.0063 47.5 3800 0.3293 0.9109 0.9364 0.9234 0.9530
0.0037 48.75 3900 0.3375 0.9146 0.9315 0.9230 0.9520
0.0056 50.0 4000 0.3155 0.9157 0.9323 0.9239 0.9530

Ner Labels

"O", "B-ACTIVITY", "I-ACTIVITY", "I-ADMINISTRATION", "B-ADMINISTRATION", "B-AGE", "I-AGE", "I-AREA", "B-AREA", "B-BIOLOGICAL_ATTRIBUTE", "I-BIOLOGICAL_ATTRIBUTE", "I-BIOLOGICAL_STRUCTURE", "B-BIOLOGICAL_STRUCTURE", "B-CLINICAL_EVENT", "I-CLINICAL_EVENT", "B-COLOR", "I-COLOR", "I-COREFERENCE", "B-COREFERENCE", "B-DATE", "I-DATE", "I-DETAILED_DESCRIPTION", "B-DETAILED_DESCRIPTION", "I-DIAGNOSTIC_PROCEDURE", "B-DIAGNOSTIC_PROCEDURE", "I-DISEASE_DISORDER", "B-DISEASE_DISORDER", "B-DISTANCE", "I-DISTANCE", "B-DOSAGE", "I-DOSAGE", "I-DURATION", "B-DURATION", "I-FAMILY_HISTORY", "B-FAMILY_HISTORY", "B-FREQUENCY", "I-FREQUENCY", "I-HEIGHT", "B-HEIGHT", "B-HISTORY", "I-HISTORY", "I-LAB_VALUE", "B-LAB_VALUE", "I-MASS", "B-MASS", "I-MEDICATION", "B-MEDICATION", "I-NONBIOLOGICAL_LOCATION", "B-NONBIOLOGICAL_LOCATION", "I-OCCUPATION", "B-OCCUPATION", "B-OTHER_ENTITY", "I-OTHER_ENTITY", "B-OTHER_EVENT", "I-OTHER_EVENT", "I-OUTCOME", "B-OUTCOME", "I-PERSONAL_BACKGROUND", "B-PERSONAL_BACKGROUND", "B-QUALITATIVE_CONCEPT", "I-QUALITATIVE_CONCEPT", "I-QUANTITATIVE_CONCEPT", "B-QUANTITATIVE_CONCEPT", "B-SEVERITY", "I-SEVERITY", "B-SEX", "I-SEX", "B-SHAPE", "I-SHAPE", "B-SIGN_SYMPTOM", "I-SIGN_SYMPTOM", "B-SUBJECT", "I-SUBJECT", "B-TEXTURE", "I-TEXTURE", "B-THERAPEUTIC_PROCEDURE", "I-THERAPEUTIC_PROCEDURE", "I-TIME", "B-TIME", "B-VOLUME", "I-VOLUME", "I-WEIGHT", "B-WEIGHT",

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for zakariyafirachine/test-ner

Finetuned
(2412)
this model

Dataset used to train zakariyafirachine/test-ner