nllb-ensi-v1.6 / README.md
zaanind's picture
Update README.md
e200592 verified
metadata
license: cc-by-nc-4.0
language:
  - en
  - si
pipeline_tag: translation
datasets:
  - zaanind/sinhala_englsih_parrel_corpus
  - zaanind/sinhala_englsih_nmt
inference:
  parameters:
    src_lang: eng_Latn
    tgt_lang: sin_Sinh
widget:
  - text: you will receive a notification when your order is ready for pickup
    example_title: example 1
  - text: you will receive a response to your inquiry within 24 hours
    example_title: example 2
  - text: >-
      i'm glad i could make it to your birthday event it was such a memorable
      experience
    example_title: example 3

What Is This?

It is a NLLB-200-600M model fine-tuned for translating between englih and sinhala languages

Training & Inference Codes - https://github.com/zaanind/NLLB-200-Sinhala

Try It

How to use the model:

1.Install necessary libraries

pip install  requests sentencepiece transformers==4.33 sacremoses  sacrebleu

2.Translate!

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch


model_name = "zaanind/nllb-ensi-v1-tuning"  #download model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)


def dotranslate(text): #define function for generation
  inputs = tokenizer(text, return_tensors="pt")
  translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["sin_Sinh"])
  out = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)

  return out


dotranslate("hello how are you?") #translate

Contact - https://t.me/zaanind