trocr-small-printedkorean-deleteunusedchar_denoise

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8528
  • Cer: 0.3241
  • Wer: 0.3436

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.9789 0.11 1000 1.5260 0.2830 0.2979
1.0254 0.21 2000 1.5167 0.2827 0.2991
1.0925 0.32 3000 1.5093 0.2879 0.3036
1.0925 0.43 4000 1.4969 0.2872 0.3037
1.0883 0.53 5000 1.4893 0.2848 0.2998
1.0411 0.64 6000 1.4839 0.2832 0.2994
1.1372 0.75 7000 1.4771 0.2841 0.2993
1.1086 0.85 8000 1.4772 0.2838 0.3010
1.1658 0.96 9000 1.4725 0.2843 0.3013
0.9649 1.07 10000 1.5067 0.2825 0.2978
0.891 1.17 11000 1.5058 0.2846 0.2993
1.0862 1.28 12000 1.4938 0.2873 0.3001
1.0845 1.39 13000 1.4923 0.2867 0.3030
1.0306 1.49 14000 1.4905 0.2833 0.2976
0.9651 1.6 15000 1.4948 0.2835 0.2986
1.1189 1.71 16000 1.4811 0.2856 0.3018
1.0727 1.82 17000 1.4763 0.2864 0.3010
1.0587 1.92 18000 1.4782 0.2830 0.2994
0.9599 2.03 19000 1.5071 0.2866 0.3011
1.0625 2.14 20000 1.5029 0.2837 0.2991
1.1031 2.24 21000 1.5084 0.2880 0.3037
0.9586 2.35 22000 1.5068 0.2842 0.2967
1.0012 2.46 23000 1.4990 0.2861 0.3017
1.0871 2.56 24000 1.4905 0.2848 0.2989
0.9501 2.67 25000 1.4848 0.2835 0.2985
0.9761 2.78 26000 1.4860 0.2819 0.2983
1.0241 2.88 27000 1.4728 0.2813 0.2949
1.065 2.99 28000 1.4826 0.2829 0.2976
1.0412 3.1 29000 1.5160 0.2879 0.3022
0.9972 3.2 30000 1.5105 0.2867 0.3009
0.9758 3.31 31000 1.5037 0.2827 0.2962
0.9521 3.42 32000 1.4986 0.2824 0.2975
1.0124 3.52 33000 1.4959 0.2870 0.3022
0.9437 3.63 34000 1.4936 0.2837 0.2985
0.9977 3.74 35000 1.4901 0.2827 0.2976
1.045 3.84 36000 1.4896 0.2836 0.2995
1.0193 3.95 37000 1.4796 0.2853 0.2968
0.9276 4.06 38000 1.5135 0.2836 0.2974
0.9583 4.16 39000 1.5174 0.2825 0.2956
1.0952 4.27 40000 1.5143 0.2889 0.3026
1.0029 4.38 41000 1.5124 0.2835 0.2986
1.0129 4.48 42000 1.5062 0.2858 0.3006
1.012 4.59 43000 1.5096 0.2845 0.2997
0.9478 4.7 44000 1.5008 0.2853 0.3002
1.0272 4.8 45000 1.5012 0.2825 0.2958
1.0532 4.91 46000 1.4957 0.2832 0.2974
0.921 5.02 47000 1.5206 0.2871 0.3009
0.9246 5.12 48000 1.5259 0.2832 0.2983
0.9689 5.23 49000 1.5274 0.2842 0.2985
1.127 5.34 50000 1.5186 0.2874 0.2997
0.9616 5.45 51000 1.5200 0.2839 0.2971
0.9833 5.55 52000 1.5142 0.2853 0.2980
0.9113 5.66 53000 1.5172 0.2828 0.2972
0.9753 5.77 54000 1.5032 0.2829 0.2944
0.9159 5.87 55000 1.4970 0.2850 0.2987
1.0663 5.98 56000 1.4979 0.2850 0.2985
0.966 6.09 57000 1.5263 0.2862 0.2976
0.9234 6.19 58000 1.5342 0.2824 0.2955
0.9234 6.3 59000 1.5327 0.2838 0.2968
0.972 6.41 60000 1.5291 0.2849 0.2983
1.0319 6.51 61000 1.5329 0.2836 0.2963
0.9746 6.62 62000 1.5222 0.2838 0.2972
1.0719 6.73 63000 1.5249 0.2848 0.2967
1.0695 6.83 64000 1.5183 0.2882 0.3013
1.0271 6.94 65000 1.5119 0.2859 0.2982
1.0119 7.05 66000 1.5410 0.2881 0.3014
0.9341 7.15 67000 1.5489 0.2871 0.2995
0.9544 7.26 68000 1.5443 0.2836 0.2974
1.0198 7.37 69000 1.5401 0.2844 0.2983
0.9269 7.47 70000 1.5384 0.2823 0.2948
0.9767 7.58 71000 1.5375 0.2853 0.2987
0.9861 7.69 72000 1.5282 0.2872 0.2991
1.0539 7.79 73000 1.5244 0.2854 0.2974
0.8879 7.9 74000 1.5305 0.2851 0.2989
0.8739 8.01 75000 1.5454 0.2868 0.2998
1.0469 8.11 76000 1.5533 0.2908 0.3033
0.9449 8.22 77000 1.5586 0.2886 0.3007
0.987 8.33 78000 1.5478 0.2900 0.3029
0.9088 8.43 79000 1.5541 0.2848 0.2976
0.8866 8.54 80000 1.5456 0.2868 0.2986
1.0161 8.65 81000 1.5494 0.2889 0.3002
0.982 8.76 82000 1.5388 0.2842 0.2976
0.956 8.86 83000 1.5377 0.2875 0.3010
0.9267 8.97 84000 1.5415 0.2870 0.2982
0.8889 9.08 85000 1.5729 0.2855 0.2983
0.9518 9.18 86000 1.5719 0.2899 0.3030
0.9469 9.29 87000 1.5661 0.2887 0.3020
0.9614 9.4 88000 1.5661 0.2938 0.3075
0.9073 9.5 89000 1.5620 0.2889 0.3021
0.9808 9.61 90000 1.5706 0.2884 0.3006
0.93 9.72 91000 1.5614 0.2923 0.3056
0.969 9.82 92000 1.5585 0.2891 0.3022
0.912 9.93 93000 1.5562 0.2890 0.3002
0.9301 10.04 94000 1.5802 0.2910 0.3052
0.9265 10.14 95000 1.5834 0.2902 0.3030
0.874 10.25 96000 1.5792 0.2898 0.3025
0.877 10.36 97000 1.5813 0.2892 0.3009
0.9479 10.46 98000 1.5716 0.2859 0.2991
1.1058 10.57 99000 1.5676 0.2964 0.3088
0.8595 10.68 100000 1.5734 0.2865 0.2999
0.924 10.78 101000 1.5721 0.2911 0.3024
0.9618 10.89 102000 1.5665 0.2885 0.3017
0.958 11.0 103000 1.5662 0.2870 0.2998
0.8141 11.1 104000 1.5915 0.2927 0.3041
0.9141 11.21 105000 1.5912 0.2952 0.3076
0.8718 11.32 106000 1.5941 0.2897 0.3034
0.9337 11.42 107000 1.5873 0.2927 0.3041
0.9101 11.53 108000 1.5901 0.2931 0.3064
0.9166 11.64 109000 1.5813 0.2885 0.3021
0.9369 11.74 110000 1.5768 0.2924 0.3037
1.0187 11.85 111000 1.5823 0.2884 0.2998
0.8388 11.96 112000 1.5763 0.2915 0.3041
0.9172 12.06 113000 1.6043 0.2923 0.3055
0.8312 12.17 114000 1.6103 0.2950 0.3100
0.8414 12.28 115000 1.6086 0.2913 0.3030
0.8941 12.39 116000 1.6057 0.2960 0.3072
0.9055 12.49 117000 1.6044 0.2905 0.3032
0.9492 12.6 118000 1.6020 0.2905 0.3030
0.9831 12.71 119000 1.6003 0.2906 0.3030
0.779 12.81 120000 1.6006 0.2892 0.3029
0.9086 12.92 121000 1.5959 0.2914 0.3038
0.866 13.03 122000 1.6154 0.2893 0.3045
0.7936 13.13 123000 1.6200 0.2951 0.3088
0.8693 13.24 124000 1.6229 0.2934 0.3075
0.8463 13.35 125000 1.6211 0.2957 0.3092
0.8946 13.45 126000 1.6192 0.2957 0.3095
0.8616 13.56 127000 1.6124 0.2928 0.3045
0.88 13.67 128000 1.6147 0.2940 0.3068
0.938 13.77 129000 1.6067 0.2904 0.3055
0.8949 13.88 130000 1.6065 0.2922 0.3061
0.8911 13.99 131000 1.5997 0.2896 0.3034
0.813 14.09 132000 1.6342 0.2915 0.3042
0.8077 14.2 133000 1.6314 0.2926 0.3053
0.8068 14.31 134000 1.6316 0.2973 0.3106
0.828 14.41 135000 1.6379 0.2899 0.3032
0.9271 14.52 136000 1.6351 0.2958 0.3095
0.8314 14.63 137000 1.6294 0.2984 0.3127
0.8468 14.73 138000 1.6318 0.2951 0.3091
0.8859 14.84 139000 1.6307 0.2944 0.3068
0.9133 14.95 140000 1.6172 0.2945 0.3071
0.8673 15.05 141000 1.6481 0.3022 0.3164
0.7975 15.16 142000 1.6517 0.2966 0.3091
0.7824 15.27 143000 1.6588 0.2982 0.3107
0.741 15.37 144000 1.6534 0.2936 0.3079
0.8285 15.48 145000 1.6464 0.2970 0.3112
0.8817 15.59 146000 1.6431 0.2955 0.3096
0.807 15.7 147000 1.6395 0.3005 0.3141
0.8341 15.8 148000 1.6407 0.2956 0.3087
0.8734 15.91 149000 1.6349 0.3031 0.3158
0.7333 16.02 150000 1.6556 0.2980 0.3123
0.7652 16.12 151000 1.6663 0.3046 0.3191
0.8292 16.23 152000 1.6680 0.3017 0.3165
0.9419 16.34 153000 1.6651 0.3053 0.3195
0.8787 16.44 154000 1.6635 0.3008 0.3156
0.9263 16.55 155000 1.6578 0.2975 0.3100
0.8244 16.66 156000 1.6601 0.2990 0.3135
0.8557 16.76 157000 1.6579 0.2949 0.3081
0.8749 16.87 158000 1.6500 0.2986 0.3121
0.7865 16.98 159000 1.6466 0.3024 0.3166
0.7753 17.08 160000 1.6764 0.3046 0.3185
0.8026 17.19 161000 1.6789 0.2995 0.3133
0.8223 17.3 162000 1.6821 0.3026 0.3177
0.7264 17.4 163000 1.6750 0.3035 0.3166
0.8394 17.51 164000 1.6716 0.3001 0.3139
0.7711 17.62 165000 1.6698 0.3027 0.3162
0.8279 17.72 166000 1.6672 0.2968 0.3133
0.8186 17.83 167000 1.6714 0.2980 0.3123
0.819 17.94 168000 1.6609 0.2991 0.3139
0.7633 18.04 169000 1.6941 0.3046 0.3181
0.8339 18.15 170000 1.6916 0.3154 0.3305
0.7452 18.26 171000 1.6963 0.3085 0.3235
0.8282 18.36 172000 1.7003 0.3079 0.3220
0.789 18.47 173000 1.6979 0.3037 0.3187
0.8215 18.58 174000 1.6940 0.3154 0.3297
0.7891 18.68 175000 1.6897 0.3040 0.3193
0.8306 18.79 176000 1.6898 0.3045 0.3195
0.8575 18.9 177000 1.6850 0.2985 0.3142
0.784 19.0 178000 1.7042 0.3013 0.3170
0.7566 19.11 179000 1.7094 0.3057 0.3223
0.7863 19.22 180000 1.7119 0.3039 0.3223
0.8157 19.33 181000 1.7098 0.3116 0.3266
0.8782 19.43 182000 1.7091 0.3061 0.3232
0.7863 19.54 183000 1.7071 0.3033 0.3185
0.8008 19.65 184000 1.7084 0.3077 0.3254
0.7919 19.75 185000 1.6996 0.3028 0.3204
0.8435 19.86 186000 1.7012 0.3058 0.3204
0.87 19.97 187000 1.7021 0.3046 0.3201
0.6902 20.07 188000 1.7367 0.2996 0.3160
0.7449 20.18 189000 1.7309 0.3119 0.3293
0.8253 20.29 190000 1.7297 0.3095 0.3254
0.7288 20.39 191000 1.7273 0.3050 0.3220
0.776 20.5 192000 1.7294 0.3049 0.3228
0.7632 20.61 193000 1.7238 0.3179 0.3349
0.7496 20.71 194000 1.7257 0.3107 0.3253
0.8491 20.82 195000 1.7209 0.3088 0.3253
0.7668 20.93 196000 1.7177 0.3080 0.3238
0.6755 21.03 197000 1.7415 0.3087 0.3258
0.6846 21.14 198000 1.7406 0.3059 0.3218
0.7551 21.25 199000 1.7416 0.3167 0.3319
0.7083 21.35 200000 1.7429 0.3120 0.3267
0.7631 21.46 201000 1.7434 0.3074 0.3240
0.7814 21.57 202000 1.7408 0.3069 0.3247
0.7646 21.67 203000 1.7395 0.3109 0.3292
0.7329 21.78 204000 1.7373 0.3149 0.3331
0.7393 21.89 205000 1.7377 0.3077 0.3242
0.766 21.99 206000 1.7351 0.3097 0.3259
0.696 22.1 207000 1.7593 0.3116 0.3266
0.8049 22.21 208000 1.7660 0.3153 0.3340
0.8011 22.31 209000 1.7611 0.3164 0.3331
0.7884 22.42 210000 1.7613 0.3127 0.3298
0.7607 22.53 211000 1.7633 0.3120 0.3300
0.7159 22.64 212000 1.7603 0.3080 0.3258
0.6687 22.74 213000 1.7571 0.3120 0.3297
0.7331 22.85 214000 1.7529 0.3060 0.3227
0.8109 22.96 215000 1.7582 0.3157 0.3331
0.7407 23.06 216000 1.7757 0.3191 0.3347
0.69 23.17 217000 1.7770 0.3162 0.3343
0.6752 23.28 218000 1.7762 0.3255 0.3437
0.7192 23.38 219000 1.7751 0.3161 0.3337
0.742 23.49 220000 1.7782 0.3136 0.3319
0.7184 23.6 221000 1.7771 0.3225 0.3398
0.7296 23.7 222000 1.7796 0.3287 0.3452
0.7527 23.81 223000 1.7722 0.3172 0.3335
0.7093 23.92 224000 1.7713 0.3128 0.3306
0.6691 24.02 225000 1.7913 0.3197 0.3362
0.6767 24.13 226000 1.7907 0.3153 0.3339
0.7133 24.24 227000 1.7925 0.3252 0.3436
0.7094 24.34 228000 1.7910 0.3197 0.3372
0.7848 24.45 229000 1.7918 0.3263 0.3437
0.7146 24.56 230000 1.7903 0.3202 0.3375
0.6932 24.66 231000 1.7895 0.3183 0.3345
0.6632 24.77 232000 1.7895 0.3193 0.3355
0.7587 24.88 233000 1.7894 0.3215 0.3387
0.7197 24.98 234000 1.7863 0.3192 0.3378
0.7759 25.09 235000 1.8054 0.3178 0.3371
0.6729 25.2 236000 1.8069 0.3165 0.3335
0.6144 25.3 237000 1.8059 0.3143 0.3317
0.6838 25.41 238000 1.8077 0.3183 0.3362
0.6925 25.52 239000 1.8017 0.3271 0.3432
0.7301 25.62 240000 1.8035 0.3206 0.3375
0.7169 25.73 241000 1.8043 0.3198 0.3370
0.6717 25.84 242000 1.8042 0.3215 0.3364
0.7113 25.94 243000 1.8048 0.3164 0.3329
0.6544 26.05 244000 1.8186 0.3225 0.3375
0.6664 26.16 245000 1.8216 0.3237 0.3403
0.7131 26.27 246000 1.8234 0.3201 0.3389
0.6202 26.37 247000 1.8222 0.3193 0.3355
0.7311 26.48 248000 1.8173 0.3221 0.3383
0.6377 26.59 249000 1.8200 0.3178 0.3356
0.6931 26.69 250000 1.8190 0.3251 0.3409
0.6402 26.8 251000 1.8198 0.3209 0.3385
0.6492 26.91 252000 1.8188 0.3209 0.3390
0.6544 27.01 253000 1.8279 0.3212 0.3380
0.641 27.12 254000 1.8321 0.3221 0.3405
0.6474 27.23 255000 1.8335 0.3230 0.3407
0.6556 27.33 256000 1.8346 0.3216 0.3395
0.6917 27.44 257000 1.8332 0.3250 0.3422
0.6741 27.55 258000 1.8344 0.3228 0.3399
0.6758 27.65 259000 1.8338 0.3182 0.3362
0.6579 27.76 260000 1.8353 0.3194 0.3383
0.6836 27.87 261000 1.8334 0.3235 0.3405
0.6936 27.97 262000 1.8335 0.3192 0.3391
0.6588 28.08 263000 1.8444 0.3197 0.3386
0.6477 28.19 264000 1.8432 0.3189 0.3403
0.6531 28.29 265000 1.8460 0.3243 0.3422
0.6467 28.4 266000 1.8448 0.3208 0.3390
0.6592 28.51 267000 1.8446 0.3234 0.3391
0.5774 28.61 268000 1.8462 0.3261 0.3446
0.6444 28.72 269000 1.8468 0.3222 0.3401
0.6853 28.83 270000 1.8459 0.3224 0.3398
0.6406 28.93 271000 1.8448 0.3185 0.3362
0.705 29.04 272000 1.8535 0.3243 0.3426
0.6171 29.15 273000 1.8535 0.3210 0.3398
0.651 29.25 274000 1.8536 0.3263 0.3459
0.6771 29.36 275000 1.8533 0.3238 0.3426
0.6554 29.47 276000 1.8536 0.3225 0.3421
0.6585 29.58 277000 1.8523 0.3212 0.3410
0.5784 29.68 278000 1.8531 0.3187 0.3379
0.6542 29.79 279000 1.8530 0.3242 0.3430
0.6015 29.9 280000 1.8528 0.3241 0.3436

Framework versions

  • Transformers 4.28.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
20
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.