This model is for debugging. It is randomly initialized using the config from meta-llama/Meta-Llama-3.1-70B-Instruct but with smaller size.

"yujiepan/llama-3.1-tiny-random" and "yujiepan/meta-llama-3.1-tiny-random" share exactly the same files except the repo name.

Codes:

import os

import torch
import transformers
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed

model_id = "meta-llama/Meta-Llama-3.1-70B-Instruct"
repo_id = "yujiepan/meta-llama-3.1-tiny-random"
save_path = f"/tmp/{repo_id}"

config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
config._name_or_path = model_id
config.hidden_size = 8
config.intermediate_size = 16
config.num_attention_heads = 2
config.num_key_value_heads = 1
config.num_hidden_layers = 2
config.torch_dtype = "bfloat16"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)

model = AutoModelForCausalLM.from_config(
    config, torch_dtype=torch.bfloat16, attn_implementation="sdpa", trust_remote_code=True
)
model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True)

set_seed(42)
with torch.no_grad():
    for _, p in sorted(model.named_parameters()):
        torch.nn.init.uniform_(p, -0.2, 0.2)

model.save_pretrained(save_path)

pipe = pipeline("text-generation", model=save_path, device="cuda", trust_remote_code=True, max_new_tokens=20)
print(pipe("Hello World!"))
Downloads last month
285
Safetensors
Model size
2.05M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including yujiepan/llama-3.1-tiny-random