all-MiniLM-L6-v2-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'bean bag',
    'bag',
    'v-neck dress',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine -0.1373
spearman_cosine -0.1665
pearson_manhattan -0.1405
spearman_manhattan -0.1633
pearson_euclidean -0.1432
spearman_euclidean -0.1665
pearson_dot -0.1373
spearman_dot -0.1665
pearson_max -0.1373
spearman_max -0.1633

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss sts-dev_spearman_cosine
0 0 - - -0.1665
0.0063 100 11.9622 - -
0.0125 200 11.265 - -
0.0188 300 10.5195 - -
0.0251 400 9.4744 - -
0.0314 500 8.4815 8.6217 -
0.0376 600 7.6105 - -
0.0439 700 6.8023 - -
0.0502 800 6.1258 - -
0.0564 900 5.5032 - -
0.0627 1000 5.0397 5.1949 -
0.0690 1100 4.6909 - -
0.0752 1200 4.5716 - -
0.0815 1300 4.3983 - -
0.0878 1400 4.2073 - -
0.0941 1500 4.2164 4.1422 -
0.1003 1600 4.0921 - -
0.1066 1700 4.1785 - -
0.1129 1800 4.0503 - -
0.1191 1900 3.8969 - -
0.1254 2000 3.8538 3.9109 -
0.1317 2100 3.872 - -
0.1380 2200 3.851 - -
0.1442 2300 3.6301 - -
0.1505 2400 3.5202 - -
0.1568 2500 3.6759 3.6389 -
0.1630 2600 3.4106 - -
0.1693 2700 3.69 - -
0.1756 2800 3.6336 - -
0.1819 2900 3.4715 - -
0.1881 3000 3.2166 3.2739 -
0.1944 3100 3.3844 - -
0.2007 3200 3.4449 - -
0.2069 3300 3.0811 - -
0.2132 3400 3.2777 - -
0.2195 3500 2.9505 3.0865 -
0.2257 3600 3.1534 - -
0.2320 3700 2.9669 - -
0.2383 3800 2.9416 - -
0.2446 3900 2.9637 - -
0.2508 4000 2.9322 2.8447 -
0.2571 4100 2.6926 - -
0.2634 4200 2.9353 - -
0.2696 4300 2.635 - -
0.2759 4400 2.5692 - -
0.2822 4500 3.0283 2.9033 -
0.2885 4600 2.5804 - -
0.2947 4700 3.1374 - -
0.3010 4800 2.8479 - -
0.3073 4900 2.6809 - -
0.3135 5000 2.8267 2.6946 -
0.3198 5100 2.7341 - -
0.3261 5200 2.8157 - -
0.3324 5300 2.5867 - -
0.3386 5400 2.8622 - -
0.3449 5500 2.9063 2.6115 -
0.3512 5600 2.1514 - -
0.3574 5700 2.3755 - -
0.3637 5800 2.5055 - -
0.3700 5900 3.3237 - -
0.3762 6000 2.561 2.7512 -
0.3825 6100 2.4351 - -
0.3888 6200 2.8472 - -
0.3951 6300 2.76 - -
0.4013 6400 2.1947 - -
0.4076 6500 2.6409 2.5367 -
0.4139 6600 2.7262 - -
0.4201 6700 2.7781 - -
0.4264 6800 2.4718 - -
0.4327 6900 2.567 - -
0.4390 7000 2.4215 2.3409 -
0.4452 7100 1.9308 - -
0.4515 7200 2.1232 - -
0.4578 7300 2.421 - -
0.4640 7400 2.3232 - -
0.4703 7500 2.8543 2.3706 -
0.4766 7600 2.4276 - -
0.4828 7700 2.4507 - -
0.4891 7800 2.1963 - -
0.4954 7900 2.4247 - -
0.5017 8000 2.1948 2.5729 -
0.5079 8100 2.4069 - -
0.5142 8200 2.4328 - -
0.5205 8300 2.2198 - -
0.5267 8400 2.1746 - -
0.5330 8500 2.2618 2.3459 -
0.5393 8600 2.3909 - -
0.5456 8700 2.035 - -
0.5518 8800 2.2626 - -
0.5581 8900 2.1541 - -
0.5644 9000 1.9424 2.1625 -
0.5706 9100 2.5152 - -
0.5769 9200 2.0462 - -
0.5832 9300 1.6124 - -
0.5895 9400 2.2236 - -
0.5957 9500 2.4706 2.0569 -
0.6020 9600 2.4612 - -
0.6083 9700 2.2784 - -
0.6145 9800 1.9335 - -
0.6208 9900 2.3779 - -
0.6271 10000 1.6778 2.1123 -
0.6333 10100 2.4721 - -
0.6396 10200 1.7822 - -
0.6459 10300 2.077 - -
0.6522 10400 1.9223 - -
0.6584 10500 2.3513 1.8403 -
0.6647 10600 2.1387 - -
0.6710 10700 2.1853 - -
0.6772 10800 1.8715 - -
0.6835 10900 1.8581 - -
0.6898 11000 2.0076 2.0063 -
0.6961 11100 2.3144 - -
0.7023 11200 2.0942 - -
0.7086 11300 1.9117 - -
0.7149 11400 2.2214 - -
0.7211 11500 1.9678 1.9029 -
0.7274 11600 1.7459 - -
0.7337 11700 2.0616 - -
0.7400 11800 1.6169 - -
0.7462 11900 1.5674 - -
0.7525 12000 1.4956 1.8267 -
0.7588 12100 2.3816 - -
0.7650 12200 2.2387 - -
0.7713 12300 1.4625 - -
0.7776 12400 2.028 - -
0.7838 12500 2.151 1.7581 -
0.7901 12600 1.6896 - -
0.7964 12700 1.8526 - -
0.8027 12800 1.9745 - -
0.8089 12900 2.1042 - -
0.8152 13000 1.83 1.5667 -
0.8215 13100 1.7451 - -
0.8277 13200 1.568 - -
0.8340 13300 1.4432 - -
0.8403 13400 1.9172 - -
0.8466 13500 1.9438 1.6055 -
0.8528 13600 1.6488 - -
0.8591 13700 1.8166 - -
0.8654 13800 1.5929 - -
0.8716 13900 1.2476 - -
0.8779 14000 1.5236 1.8921 -
0.8842 14100 1.6538 - -
0.8904 14200 1.8689 - -
0.8967 14300 1.0831 - -
0.9030 14400 1.7765 - -
0.9093 14500 1.3548 1.6683 -
0.9155 14600 1.7792 - -
0.9218 14700 1.73 - -
0.9281 14800 1.5979 - -
0.9343 14900 1.3678 - -
0.9406 15000 2.0664 1.5161 -
0.9469 15100 1.4472 - -
0.9532 15200 1.447 - -
0.9594 15300 1.7261 - -
0.9657 15400 1.4881 - -
0.9720 15500 1.313 1.6227 -
0.9782 15600 1.4587 - -
0.9845 15700 2.0982 - -
0.9908 15800 1.4854 - -
0.9971 15900 1.343 - -
1.0033 16000 1.1795 1.5639 -
1.0096 16100 1.4001 - -
1.0159 16200 1.3867 - -
1.0221 16300 1.5191 - -
1.0284 16400 1.4693 - -
1.0347 16500 1.628 1.4716 -
1.0409 16600 1.0041 - -
1.0472 16700 1.7728 - -
1.0535 16800 1.5586 - -
1.0598 16900 1.7229 - -
1.0660 17000 1.5556 1.4676 -
1.0723 17100 1.2529 - -
1.0786 17200 1.4787 - -
1.0848 17300 1.1947 - -
1.0911 17400 1.3014 - -
1.0974 17500 1.3743 1.4624 -
1.1037 17600 1.3397 - -
1.1099 17700 1.3062 - -
1.1162 17800 1.3288 - -
1.1225 17900 2.0002 - -
1.1287 18000 2.0294 1.4185 -
1.1350 18100 1.5053 - -
1.1413 18200 1.3657 - -
1.1476 18300 1.3877 - -
1.1538 18400 1.9034 - -
1.1601 18500 1.4001 1.3813 -
1.1664 18600 1.7503 - -
1.1726 18700 1.1482 - -
1.1789 18800 1.0958 - -
1.1852 18900 1.2657 - -
1.1914 19000 1.3721 1.4702 -
1.1977 19100 1.2361 - -
1.2040 19200 1.003 - -
1.2103 19300 1.3677 - -
1.2165 19400 1.668 - -
1.2228 19500 1.2026 1.3641 -
1.2291 19600 1.1754 - -
1.2353 19700 1.3196 - -
1.2416 19800 1.4766 - -
1.2479 19900 1.389 - -
1.2542 20000 1.6974 1.3344 -
1.2604 20100 1.5036 - -
1.2667 20200 1.1728 - -
1.2730 20300 1.6058 - -
1.2792 20400 1.5191 - -
1.2855 20500 1.4516 1.3210 -
1.2918 20600 1.3485 - -
1.2980 20700 1.2598 - -
1.3043 20800 1.5871 - -
1.3106 20900 1.1965 - -
1.3169 21000 1.3983 1.2517 -
1.3231 21100 1.2605 - -
1.3294 21200 1.5629 - -
1.3357 21300 1.0668 - -
1.3419 21400 1.1879 - -
1.3482 21500 1.132 1.3881 -
1.3545 21600 1.7231 - -
1.3608 21700 1.7636 - -
1.3670 21800 1.1193 - -
1.3733 21900 1.4662 - -
1.3796 22000 2.0394 1.1927 -
1.3858 22100 1.1535 - -
1.3921 22200 1.4592 - -
1.3984 22300 1.276 - -
1.4047 22400 1.2984 - -
1.4109 22500 0.9741 1.2707 -
1.4172 22600 1.4253 - -
1.4235 22700 1.0769 - -
1.4297 22800 0.8276 - -
1.4360 22900 1.2689 - -
1.4423 23000 1.4817 1.2095 -
1.4485 23100 1.1522 - -
1.4548 23200 0.8978 - -
1.4611 23300 1.015 - -
1.4674 23400 1.0351 - -
1.4736 23500 1.3959 1.1969 -
1.4799 23600 1.2879 - -
1.4862 23700 1.0651 - -
1.4924 23800 1.1601 - -
1.4987 23900 1.0034 - -
1.5050 24000 1.3386 1.1590 -
1.5113 24100 1.142 - -
1.5175 24200 1.3495 - -
1.5238 24300 0.9993 - -
1.5301 24400 0.9363 - -
1.5363 24500 1.4402 1.2178 -
1.5426 24600 1.0648 - -
1.5489 24700 1.5102 - -
1.5552 24800 1.3415 - -
1.5614 24900 0.7441 - -
1.5677 25000 0.901 1.1982 -
1.5740 25100 1.3147 - -
1.5802 25200 0.971 - -
1.5865 25300 0.9988 - -
1.5928 25400 1.1445 - -
1.5990 25500 1.1018 1.1423 -
1.6053 25600 1.0902 - -
1.6116 25700 1.2577 - -
1.6179 25800 1.2005 - -
1.6241 25900 1.2839 - -
1.6304 26000 1.4122 1.1125 -
1.6367 26100 0.7832 - -
1.6429 26200 1.3278 - -
1.6492 26300 1.2055 - -
1.6555 26400 1.5814 - -
1.6618 26500 1.0393 1.0946 -
1.6680 26600 1.4531 - -
1.6743 26700 1.4162 - -
1.6806 26800 0.8498 - -
1.6868 26900 1.1318 - -
1.6931 27000 1.3287 1.0439 -
1.6994 27100 1.0886 - -
1.7056 27200 0.8991 - -
1.7119 27300 0.7563 - -
1.7182 27400 0.9284 - -
1.7245 27500 1.3388 1.0940 -
1.7307 27600 1.2951 - -
1.7370 27700 0.9789 - -
1.7433 27800 1.2898 - -
1.7495 27900 0.9915 - -
1.7558 28000 1.5349 1.0266 -
1.7621 28100 1.124 - -
1.7684 28200 0.809 - -
1.7746 28300 0.9617 - -
1.7809 28400 1.3061 - -
1.7872 28500 1.1323 1.0488 -
1.7934 28600 1.2991 - -
1.7997 28700 0.8708 - -
1.8060 28800 0.7493 - -
1.8123 28900 1.004 - -
1.8185 29000 1.1477 1.0206 -
1.8248 29100 1.1826 - -
1.8311 29200 1.0961 - -
1.8373 29300 1.4743 - -
1.8436 29400 0.8413 - -
1.8499 29500 1.2623 1.0047 -
1.8561 29600 0.8486 - -
1.8624 29700 1.4481 - -
1.8687 29800 1.2704 - -
1.8750 29900 1.1913 - -
1.8812 30000 0.9369 1.0277 -
1.8875 30100 1.2427 - -
1.8938 30200 1.0576 - -
1.9000 30300 0.9188 - -
1.9063 30400 1.3227 - -
1.9126 30500 1.4614 1.0550 -
1.9189 30600 1.2316 - -
1.9251 30700 0.9487 - -
1.9314 30800 1.1651 - -
1.9377 30900 1.1622 - -
1.9439 31000 1.1801 0.9981 -
1.9502 31100 0.8798 - -
1.9565 31200 0.7196 - -
1.9628 31300 1.2003 - -
1.9690 31400 1.1823 - -
1.9753 31500 1.1453 1.0320 -
1.9816 31600 1.4751 - -
1.9878 31700 0.8502 - -
1.9941 31800 0.8757 - -
2.0004 31900 1.0489 - -
2.0066 32000 1.4672 1.0571 -
2.0129 32100 0.9474 - -
2.0192 32200 0.8037 - -
2.0255 32300 0.9782 - -
2.0317 32400 0.6943 - -
2.0380 32500 1.0097 0.9797 -
2.0443 32600 0.9067 - -
2.0505 32700 1.09 - -
2.0568 32800 0.8464 - -
2.0631 32900 0.9359 - -
2.0694 33000 0.813 0.9907 -
2.0756 33100 0.8738 - -
2.0819 33200 0.8178 - -
2.0882 33300 1.1704 - -
2.0944 33400 1.0073 - -
2.1007 33500 1.1849 0.9582 -
2.1070 33600 0.7795 - -
2.1133 33700 0.7688 - -
2.1195 33800 0.9465 - -
2.1258 33900 1.0883 - -
2.1321 34000 0.7711 0.9557 -
2.1383 34100 0.9767 - -
2.1446 34200 0.6702 - -
2.1509 34300 0.9444 - -
2.1571 34400 0.8741 - -
2.1634 34500 1.0717 0.9526 -
2.1697 34600 0.8584 - -
2.1760 34700 0.8926 - -
2.1822 34800 0.8567 - -
2.1885 34900 0.71 - -
2.1948 35000 1.1285 0.9589 -
2.2010 35100 0.8999 - -
2.2073 35200 0.8459 - -
2.2136 35300 1.0608 - -
2.2199 35400 0.6115 - -
2.2261 35500 1.2468 0.9769 -
2.2324 35600 0.9987 - -
2.2387 35700 0.9186 - -
2.2449 35800 1.0505 - -
2.2512 35900 0.6253 - -
2.2575 36000 0.6523 0.9501 -
2.2637 36100 0.8252 - -
2.2700 36200 0.9793 - -
2.2763 36300 0.8845 - -
2.2826 36400 1.0121 - -
2.2888 36500 0.9849 0.9245 -
2.2951 36600 1.2937 - -
2.3014 36700 1.0484 - -
2.3076 36800 0.8801 - -
2.3139 36900 0.7552 - -
2.3202 37000 0.7641 0.9280 -
2.3265 37100 0.883 - -
2.3327 37200 0.77 - -
2.3390 37300 1.2699 - -
2.3453 37400 0.8766 - -
2.3515 37500 1.1154 0.9623 -
2.3578 37600 1.0634 - -
2.3641 37700 0.8822 - -
2.3704 37800 0.839 - -
2.3766 37900 0.684 - -
2.3829 38000 0.8051 0.9198 -
2.3892 38100 0.9585 - -
2.3954 38200 0.7156 - -
2.4017 38300 0.5271 - -
2.4080 38400 0.805 - -
2.4142 38500 0.7898 0.8785 -
2.4205 38600 0.6935 - -
2.4268 38700 0.8011 - -
2.4331 38800 0.9812 - -
2.4393 38900 0.4427 - -
2.4456 39000 0.492 0.9313 -
2.4519 39100 0.47 - -
2.4581 39200 1.1876 - -
2.4644 39300 0.5778 - -
2.4707 39400 0.6763 - -
2.4770 39500 0.6896 0.8978 -
2.4832 39600 0.8905 - -
2.4895 39700 0.7845 - -
2.4958 39800 0.8691 - -
2.5020 39900 0.55 - -
2.5083 40000 0.6978 0.9054 -
2.5146 40100 0.6378 - -
2.5209 40200 0.895 - -
2.5271 40300 0.9683 - -
2.5334 40400 0.9373 - -
2.5397 40500 0.7406 0.9128 -
2.5459 40600 0.8917 - -
2.5522 40700 1.0552 - -
2.5585 40800 0.5281 - -
2.5647 40900 0.9064 - -
2.5710 41000 0.6886 0.9049 -
2.5773 41100 0.7166 - -
2.5836 41200 0.8343 - -
2.5898 41300 0.9468 - -
2.5961 41400 0.8529 - -
2.6024 41500 0.8092 0.8954 -
2.6086 41600 0.8501 - -
2.6149 41700 0.9877 - -
2.6212 41800 0.8592 - -
2.6275 41900 0.8632 - -
2.6337 42000 0.6766 0.8707 -
2.6400 42100 0.7587 - -
2.6463 42200 0.8949 - -
2.6525 42300 0.4173 - -
2.6588 42400 0.5995 - -
2.6651 42500 0.8157 0.8681 -
2.6713 42600 0.92 - -
2.6776 42700 0.9118 - -
2.6839 42800 0.7446 - -
2.6902 42900 0.6835 - -
2.6964 43000 0.6157 0.8691 -
2.7027 43100 0.5423 - -
2.7090 43200 0.8098 - -
2.7152 43300 0.8908 - -
2.7215 43400 1.1275 - -
2.7278 43500 1.0345 0.8884 -
2.7341 43600 0.6198 - -
2.7403 43700 0.8315 - -
2.7466 43800 0.9317 - -
2.7529 43900 0.516 - -
2.7591 44000 0.8229 0.8659 -
2.7654 44100 0.7989 - -
2.7717 44200 0.9291 - -
2.7780 44300 0.5954 - -
2.7842 44400 0.8537 - -
2.7905 44500 0.9506 0.8657 -
2.7968 44600 0.5789 - -
2.8030 44700 0.4861 - -
2.8093 44800 0.9614 - -
2.8156 44900 1.0069 - -
2.8218 45000 0.5599 0.8619 -
2.8281 45100 1.3747 - -
2.8344 45200 0.5638 - -
2.8407 45300 1.2095 - -
2.8469 45400 0.7364 - -
2.8532 45500 0.5692 0.8818 -
2.8595 45600 0.8848 - -
2.8657 45700 0.9063 - -
2.8720 45800 0.8675 - -
2.8783 45900 0.9703 - -
2.8846 46000 0.6657 0.8424 -
2.8908 46100 0.6564 - -
2.8971 46200 0.7945 - -
2.9034 46300 0.6341 - -
2.9096 46400 1.042 - -
2.9159 46500 1.0812 0.8510 -
2.9222 46600 0.9787 - -
2.9285 46700 0.8732 - -
2.9347 46800 1.1872 - -
2.9410 46900 0.989 - -
2.9473 47000 0.874 0.8215 -
2.9535 47100 1.0229 - -
2.9598 47200 0.9888 - -
2.9661 47300 0.4883 - -
2.9723 47400 0.7474 - -
2.9786 47500 0.7615 0.8218 -
2.9849 47600 0.6208 - -
2.9912 47700 0.8332 - -
2.9974 47800 0.6734 - -
3.0037 47900 0.5095 - -
3.0100 48000 0.7709 0.8220 -
3.0162 48100 0.5449 - -
3.0225 48200 0.772 - -
3.0288 48300 0.8582 - -
3.0351 48400 0.5742 - -
3.0413 48500 0.5584 0.8493 -
3.0476 48600 0.9766 - -
3.0539 48700 0.6473 - -
3.0601 48800 0.5861 - -
3.0664 48900 0.6377 - -
3.0727 49000 0.8393 0.8430 -
3.0789 49100 0.8385 - -
3.0852 49200 0.5523 - -
3.0915 49300 0.6217 - -
3.0978 49400 0.5515 - -
3.1040 49500 0.851 0.8000 -
3.1103 49600 0.9247 - -
3.1166 49700 0.655 - -
3.1228 49800 0.4979 - -
3.1291 49900 0.7521 - -
3.1354 50000 0.53 0.8105 -
3.1417 50100 0.5943 - -
3.1479 50200 0.4659 - -
3.1542 50300 0.4843 - -
3.1605 50400 0.7577 - -
3.1667 50500 0.3448 0.8055 -
3.1730 50600 0.8392 - -
3.1793 50700 0.75 - -
3.1856 50800 0.5195 - -
3.1918 50900 0.617 - -
3.1981 51000 0.6892 0.8293 -
3.2044 51100 0.497 - -
3.2106 51200 0.6793 - -
3.2169 51300 0.7251 - -
3.2232 51400 0.6471 - -
3.2294 51500 0.775 0.8013 -
3.2357 51600 0.7289 - -
3.2420 51700 0.6894 - -
3.2483 51800 0.5677 - -
3.2545 51900 0.317 - -
3.2608 52000 0.5376 0.7853 -
3.2671 52100 0.4582 - -
3.2733 52200 0.8505 - -
3.2796 52300 0.6236 - -
3.2859 52400 0.7388 - -
3.2922 52500 0.7061 0.7863 -
3.2984 52600 0.5411 - -
3.3047 52700 0.9511 - -
3.3110 52800 0.5364 - -
3.3172 52900 0.5795 - -
3.3235 53000 0.5305 0.7876 -
3.3298 53100 0.8051 - -
3.3361 53200 0.5342 - -
3.3423 53300 0.4567 - -
3.3486 53400 0.9751 - -
3.3549 53500 0.4413 0.8008 -
3.3611 53600 0.6011 - -
3.3674 53700 0.4708 - -
3.3737 53800 0.6167 - -
3.3799 53900 0.7653 - -
3.3862 54000 0.7781 0.7897 -
3.3925 54100 0.9323 - -
3.3988 54200 0.6003 - -
3.4050 54300 0.5268 - -
3.4113 54400 0.6639 - -
3.4176 54500 0.388 0.7855 -
3.4238 54600 0.7258 - -
3.4301 54700 0.6475 - -
3.4364 54800 0.795 - -
3.4427 54900 0.4978 - -
3.4489 55000 0.6259 0.7705 -
3.4552 55100 0.791 - -
3.4615 55200 0.7602 - -
3.4677 55300 0.2236 - -
3.4740 55400 0.5577 - -
3.4803 55500 0.4214 0.7683 -
3.4865 55600 0.7335 - -
3.4928 55700 0.7536 - -
3.4991 55800 0.4577 - -
3.5054 55900 0.5869 - -
3.5116 56000 0.8563 0.7587 -
3.5179 56100 0.9291 - -
3.5242 56200 0.4387 - -
3.5304 56300 0.4491 - -
3.5367 56400 0.506 - -
3.5430 56500 0.6626 0.7634 -
3.5493 56600 0.8654 - -
3.5555 56700 0.4455 - -
3.5618 56800 0.4593 - -
3.5681 56900 0.878 - -
3.5743 57000 0.3737 0.7617 -
3.5806 57100 0.377 - -
3.5869 57200 0.6894 - -
3.5932 57300 0.6635 - -
3.5994 57400 0.9224 - -
3.6057 57500 0.635 0.7669 -
3.6120 57600 0.6797 - -
3.6182 57700 0.9814 - -
3.6245 57800 0.9893 - -
3.6308 57900 0.6753 - -
3.6370 58000 0.8349 0.7501 -
3.6433 58100 0.8523 - -
3.6496 58200 0.2962 - -
3.6559 58300 0.6585 - -
3.6621 58400 1.0247 - -
3.6684 58500 0.8638 0.7577 -
3.6747 58600 0.9456 - -
3.6809 58700 0.5401 - -
3.6872 58800 0.6602 - -
3.6935 58900 0.7543 - -
3.6998 59000 0.7893 0.7600 -
3.7060 59100 0.7746 - -
3.7123 59200 0.6539 - -
3.7186 59300 0.8083 - -
3.7248 59400 0.3429 - -
3.7311 59500 0.5005 0.7445 -
3.7374 59600 0.6238 - -
3.7437 59700 0.4343 - -
3.7499 59800 0.8189 - -
3.7562 59900 0.6272 - -
3.7625 60000 0.2982 0.7597 -
3.7687 60100 0.7028 - -
3.7750 60200 0.9447 - -
3.7813 60300 0.6175 - -
3.7875 60400 0.5856 - -
3.7938 60500 0.8249 0.7505 -
3.8001 60600 0.6617 - -
3.8064 60700 0.5767 - -
3.8126 60800 1.0094 - -
3.8189 60900 0.471 - -
3.8252 61000 0.6313 0.7489 -
3.8314 61100 0.6545 - -
3.8377 61200 0.699 - -
3.8440 61300 0.6272 - -
3.8503 61400 0.7375 - -
3.8565 61500 0.4213 0.7490 -
3.8628 61600 0.6631 - -
3.8691 61700 0.552 - -
3.8753 61800 0.7041 - -
3.8816 61900 0.8457 - -
3.8879 62000 0.8104 0.7477 -
3.8941 62100 0.4494 - -
3.9004 62200 0.6947 - -
3.9067 62300 0.8061 - -
3.9130 62400 0.416 - -
3.9192 62500 0.7359 0.7468 -
3.9255 62600 0.7408 - -
3.9318 62700 0.6255 - -
3.9380 62800 0.7865 - -
3.9443 62900 0.4879 - -
3.9506 63000 0.5196 0.7485 -
3.9569 63100 0.5683 - -
3.9631 63200 0.5141 - -
3.9694 63300 0.6068 - -
3.9757 63400 0.5929 - -
3.9819 63500 0.7513 0.7482 -
3.9882 63600 0.5053 - -
3.9945 63700 0.5707 - -

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.1
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
12
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for youssefkhalil320/all-MiniLM-L6-v2-pairscore

Finetuned
(199)
this model

Evaluation results