all-MiniLM-L6-v2-five_scores

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'foam beanbag',
    'bag',
    'cycling shorts',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.1749
spearman_cosine 0.0999
pearson_manhattan 0.1751
spearman_manhattan 0.1013
pearson_euclidean 0.1748
spearman_euclidean 0.0999
pearson_dot 0.1749
spearman_dot 0.0999
pearson_max 0.1751
spearman_max 0.1013

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss sts-dev_spearman_cosine
0 0 - - 0.0999
0.0042 100 12.0647 - -
0.0084 200 11.7727 - -
0.0127 300 11.1315 - -
0.0169 400 10.8852 - -
0.0211 500 9.9168 10.4208 -
0.0253 600 9.4099 - -
0.0296 700 8.5361 - -
0.0338 800 7.7286 - -
0.0380 900 7.0852 - -
0.0422 1000 6.3646 6.6350 -
0.0464 1100 6.1673 - -
0.0507 1200 5.5683 - -
0.0549 1300 5.4462 - -
0.0591 1400 5.303 - -
0.0633 1500 5.1935 5.2429 -
0.0675 1600 5.1856 - -
0.0718 1700 5.0136 - -
0.0760 1800 5.0667 - -
0.0802 1900 4.9982 - -
0.0844 2000 5.0429 5.0099 -
0.0887 2100 4.8719 - -
0.0929 2200 4.8579 - -
0.0971 2300 4.9282 - -
0.1013 2400 4.9848 - -
0.1055 2500 4.8974 4.9078 -
0.1098 2600 4.9103 - -
0.1140 2700 4.7459 - -
0.1182 2800 4.8084 - -
0.1224 2900 4.8221 - -
0.1267 3000 4.7622 4.8170 -
0.1309 3100 4.7004 - -
0.1351 3200 4.6912 - -
0.1393 3300 4.6595 - -
0.1435 3400 4.7322 - -
0.1478 3500 4.7575 4.7199 -
0.1520 3600 4.6443 - -
0.1562 3700 4.6638 - -
0.1604 3800 4.5958 - -
0.1646 3900 4.6285 - -
0.1689 4000 4.6347 4.6554 -
0.1731 4100 4.6558 - -
0.1773 4200 4.6712 - -
0.1815 4300 4.6126 - -
0.1858 4400 4.6219 - -
0.1900 4500 4.6101 4.6206 -
0.1942 4600 4.7682 - -
0.1984 4700 4.5385 - -
0.2026 4800 4.6744 - -
0.2069 4900 4.5383 - -
0.2111 5000 4.6095 4.6262 -
0.2153 5100 4.6807 - -
0.2195 5200 4.4866 - -
0.2238 5300 4.5353 - -
0.2280 5400 4.5285 - -
0.2322 5500 4.5416 4.5914 -
0.2364 5600 4.623 - -
0.2406 5700 4.5337 - -
0.2449 5800 4.5726 - -
0.2491 5900 4.5467 - -
0.2533 6000 4.3986 4.6011 -
0.2575 6100 4.559 - -
0.2617 6200 4.6066 - -
0.2660 6300 4.4445 - -
0.2702 6400 4.4518 - -
0.2744 6500 4.4761 4.5093 -
0.2786 6600 4.3362 - -
0.2829 6700 4.4936 - -
0.2871 6800 4.2397 - -
0.2913 6900 4.5243 - -
0.2955 7000 4.496 4.3969 -
0.2997 7100 4.2558 - -
0.3040 7200 4.4691 - -
0.3082 7300 4.4819 - -
0.3124 7400 4.3785 - -
0.3166 7500 4.4214 4.4199 -
0.3209 7600 4.4935 - -
0.3251 7700 4.4238 - -
0.3293 7800 4.5361 - -
0.3335 7900 4.4284 - -
0.3377 8000 4.3918 4.3976 -
0.3420 8100 4.4622 - -
0.3462 8200 4.4128 - -
0.3504 8300 4.1565 - -
0.3546 8400 4.3241 - -
0.3588 8500 4.2764 4.4261 -
0.3631 8600 4.2101 - -
0.3673 8700 4.4044 - -
0.3715 8800 4.254 - -
0.3757 8900 4.362 - -
0.3800 9000 4.3424 4.4409 -
0.3842 9100 4.3383 - -
0.3884 9200 4.4713 - -
0.3926 9300 4.2773 - -
0.3968 9400 4.2842 - -
0.4011 9500 4.3301 4.3454 -
0.4053 9600 4.3224 - -
0.4095 9700 4.3878 - -
0.4137 9800 4.3614 - -
0.4180 9900 4.3423 - -
0.4222 10000 4.3576 4.3549 -
0.4264 10100 4.1451 - -
0.4306 10200 4.3326 - -
0.4348 10300 4.2761 - -
0.4391 10400 4.2421 - -
0.4433 10500 4.262 4.3493 -
0.4475 10600 4.1227 - -
0.4517 10700 4.2365 - -
0.4559 10800 4.3528 - -
0.4602 10900 4.077 - -
0.4644 11000 4.0878 4.3349 -
0.4686 11100 4.4246 - -
0.4728 11200 4.1019 - -
0.4771 11300 4.2565 - -
0.4813 11400 4.3177 - -
0.4855 11500 4.1283 4.4236 -
0.4897 11600 4.2232 - -
0.4939 11700 4.2347 - -
0.4982 11800 4.082 - -
0.5024 11900 4.2026 - -
0.5066 12000 4.2687 4.2691 -
0.5108 12100 4.302 - -
0.5151 12200 4.0474 - -
0.5193 12300 4.1286 - -
0.5235 12400 4.3888 - -
0.5277 12500 4.2339 4.2414 -
0.5319 12600 4.1976 - -
0.5362 12700 4.1851 - -
0.5404 12800 4.3969 - -
0.5446 12900 4.5229 - -
0.5488 13000 4.2242 4.1389 -
0.5530 13100 4.2804 - -
0.5573 13200 4.2097 - -
0.5615 13300 3.9226 - -
0.5657 13400 4.2274 - -
0.5699 13500 4.0309 4.2421 -
0.5742 13600 4.3429 - -
0.5784 13700 4.0352 - -
0.5826 13800 4.2926 - -
0.5868 13900 4.3063 - -
0.5910 14000 4.3172 4.2267 -
0.5953 14100 4.0057 - -
0.5995 14200 4.2081 - -
0.6037 14300 4.2408 - -
0.6079 14400 4.1066 - -
0.6122 14500 4.1997 4.1798 -
0.6164 14600 4.2364 - -
0.6206 14700 4.1135 - -
0.6248 14800 4.0561 - -
0.6290 14900 4.0347 - -
0.6333 15000 4.1979 4.2409 -
0.6375 15100 4.0132 - -
0.6417 15200 4.1131 - -
0.6459 15300 3.8049 - -
0.6501 15400 3.9468 - -
0.6544 15500 4.17 4.1938 -
0.6586 15600 4.2369 - -
0.6628 15700 4.159 - -
0.6670 15800 4.1172 - -
0.6713 15900 4.01 - -
0.6755 16000 4.0204 4.2796 -
0.6797 16100 4.0013 - -
0.6839 16200 4.0174 - -
0.6881 16300 4.0616 - -
0.6924 16400 3.9944 - -
0.6966 16500 4.05 4.2132 -
0.7008 16600 4.0769 - -
0.7050 16700 4.1289 - -
0.7092 16800 4.0941 - -
0.7135 16900 4.2556 - -
0.7177 17000 4.3075 4.1288 -
0.7219 17100 4.0751 - -
0.7261 17200 4.0711 - -
0.7304 17300 3.9483 - -
0.7346 17400 4.3186 - -
0.7388 17500 3.932 4.1148 -
0.7430 17600 3.8774 - -
0.7472 17700 4.2312 - -
0.7515 17800 3.9327 - -
0.7557 17900 4.2264 - -
0.7599 18000 3.9723 4.1061 -
0.7641 18100 4.1206 - -
0.7684 18200 4.1744 - -
0.7726 18300 3.89 - -
0.7768 18400 4.1414 - -
0.7810 18500 4.0286 4.1405 -
0.7852 18600 3.885 - -
0.7895 18700 4.3785 - -
0.7937 18800 3.9304 - -
0.7979 18900 4.0831 - -
0.8021 19000 4.1698 4.0998 -
0.8063 19100 3.9876 - -
0.8106 19200 3.9194 - -
0.8148 19300 3.9222 - -
0.8190 19400 4.1863 - -
0.8232 19500 4.0315 4.0778 -
0.8275 19600 3.9286 - -
0.8317 19700 3.9605 - -
0.8359 19800 4.1991 - -
0.8401 19900 4.0311 - -
0.8443 20000 3.7869 4.1749 -
0.8486 20100 3.9232 - -
0.8528 20200 4.034 - -
0.8570 20300 4.2625 - -
0.8612 20400 3.983 - -
0.8655 20500 4.2154 4.1057 -
0.8697 20600 4.1696 - -
0.8739 20700 3.8989 - -
0.8781 20800 3.9004 - -
0.8823 20900 4.2134 - -
0.8866 21000 3.9789 4.0880 -
0.8908 21100 4.2438 - -
0.8950 21200 3.9271 - -
0.8992 21300 3.9693 - -
0.9034 21400 4.0197 - -
0.9077 21500 4.1802 4.0145 -
0.9119 21600 3.8818 - -
0.9161 21700 4.1069 - -
0.9203 21800 3.7999 - -
0.9246 21900 3.8949 - -
0.9288 22000 3.9893 4.1313 -
0.9330 22100 4.0918 - -
0.9372 22200 4.0451 - -
0.9414 22300 3.9312 - -
0.9457 22400 4.117 - -
0.9499 22500 3.883 4.1090 -
0.9541 22600 3.6942 - -
0.9583 22700 4.1196 - -
0.9626 22800 3.9292 - -
0.9668 22900 3.9081 - -
0.9710 23000 3.8169 4.1232 -
0.9752 23100 3.8342 - -
0.9794 23200 4.078 - -
0.9837 23300 4.0002 - -
0.9879 23400 3.9373 - -
0.9921 23500 3.8344 4.1565 -
0.9963 23600 4.2827 - -
1.0005 23700 4.0298 - -
1.0048 23800 3.9967 - -
1.0090 23900 3.7508 - -
1.0132 24000 3.8919 4.0790 -
1.0174 24100 4.0181 - -
1.0217 24200 3.7934 - -
1.0259 24300 3.8986 - -
1.0301 24400 3.9275 - -
1.0343 24500 3.6911 4.1602 -
1.0385 24600 3.5855 - -
1.0428 24700 3.7875 - -
1.0470 24800 3.7999 - -
1.0512 24900 3.7718 - -
1.0554 25000 3.8362 4.0381 -
1.0597 25100 3.8076 - -
1.0639 25200 3.8875 - -
1.0681 25300 3.9675 - -
1.0723 25400 3.8451 - -
1.0765 25500 3.4346 4.1996 -
1.0808 25600 4.0584 - -
1.0850 25700 3.602 - -
1.0892 25800 3.673 - -
1.0934 25900 3.976 - -
1.0976 26000 3.8768 3.9983 -
1.1019 26100 3.7575 - -
1.1061 26200 3.8101 - -
1.1103 26300 4.104 - -
1.1145 26400 3.7139 - -
1.1188 26500 4.0391 4.0018 -
1.1230 26600 3.8449 - -
1.1272 26700 3.7146 - -
1.1314 26800 4.0576 - -
1.1356 26900 3.8831 - -
1.1399 27000 3.8161 4.0019 -
1.1441 27100 3.9283 - -
1.1483 27200 3.8637 - -
1.1525 27300 3.701 - -
1.1568 27400 3.9364 - -
1.1610 27500 3.7305 3.9959 -
1.1652 27600 3.8542 - -
1.1694 27700 3.7249 - -
1.1736 27800 3.7223 - -
1.1779 27900 3.9777 - -
1.1821 28000 3.8036 4.0547 -
1.1863 28100 3.8635 - -
1.1905 28200 3.8523 - -
1.1947 28300 3.6757 - -
1.1990 28400 3.7519 - -
1.2032 28500 3.983 4.0389 -
1.2074 28600 3.8288 - -
1.2116 28700 3.8074 - -
1.2159 28800 3.714 - -
1.2201 28900 3.6594 - -
1.2243 29000 3.9452 4.0274 -
1.2285 29100 3.9906 - -
1.2327 29200 3.9826 - -
1.2370 29300 3.8635 - -
1.2412 29400 3.9888 - -
1.2454 29500 3.7248 4.0287 -
1.2496 29600 3.7484 - -
1.2539 29700 3.9694 - -
1.2581 29800 4.059 - -
1.2623 29900 3.9358 - -
1.2665 30000 3.8575 3.9484 -
1.2707 30100 3.8382 - -
1.2750 30200 3.73 - -
1.2792 30300 4.0439 - -
1.2834 30400 3.8426 - -
1.2876 30500 3.7062 4.0188 -
1.2918 30600 3.8926 - -
1.2961 30700 4.0276 - -
1.3003 30800 3.6359 - -
1.3045 30900 4.0006 - -
1.3087 31000 3.8485 4.0019 -
1.3130 31100 3.7892 - -
1.3172 31200 3.5783 - -
1.3214 31300 4.0018 - -
1.3256 31400 3.9542 - -
1.3298 31500 3.7739 3.9875 -
1.3341 31600 3.8806 - -
1.3383 31700 4.176 - -
1.3425 31800 3.826 - -
1.3467 31900 3.8514 - -
1.3510 32000 3.8261 3.9716 -
1.3552 32100 3.8825 - -
1.3594 32200 3.6388 - -
1.3636 32300 3.7851 - -
1.3678 32400 3.5687 - -
1.3721 32500 3.5408 3.9371 -
1.3763 32600 3.6995 - -
1.3805 32700 3.882 - -
1.3847 32800 3.8703 - -
1.3889 32900 3.806 - -
1.3932 33000 3.7826 3.8901 -
1.3974 33100 3.7853 - -
1.4016 33200 3.5745 - -
1.4058 33300 3.5884 - -
1.4101 33400 3.8678 - -
1.4143 33500 4.0917 3.9332 -
1.4185 33600 3.7125 - -
1.4227 33700 3.7298 - -
1.4269 33800 3.9447 - -
1.4312 33900 3.7176 - -
1.4354 34000 3.6765 4.0302 -
1.4396 34100 3.9847 - -
1.4438 34200 3.7364 - -
1.4481 34300 3.8246 - -
1.4523 34400 3.575 - -
1.4565 34500 3.814 3.9519 -
1.4607 34600 3.8708 - -
1.4649 34700 3.7277 - -
1.4692 34800 3.7758 - -
1.4734 34900 3.6727 - -
1.4776 35000 3.773 3.9528 -
1.4818 35100 4.0004 - -
1.4860 35200 3.8468 - -
1.4903 35300 3.6814 - -
1.4945 35400 3.8993 - -
1.4987 35500 3.8841 3.9402 -
1.5029 35600 3.8272 - -
1.5072 35700 3.584 - -
1.5114 35800 3.8424 - -
1.5156 35900 3.7274 - -
1.5198 36000 3.9671 3.9035 -
1.5240 36100 3.7078 - -
1.5283 36200 3.7524 - -
1.5325 36300 3.6992 - -
1.5367 36400 3.8152 - -
1.5409 36500 3.9007 3.9785 -
1.5452 36600 3.6302 - -
1.5494 36700 3.6208 - -
1.5536 36800 3.6039 - -
1.5578 36900 3.7039 - -
1.5620 37000 3.7069 3.9215 -
1.5663 37100 3.7246 - -
1.5705 37200 3.7269 - -
1.5747 37300 3.6822 - -
1.5789 37400 3.7083 - -
1.5831 37500 3.7095 3.9668 -
1.5874 37600 3.4556 - -
1.5916 37700 4.0595 - -
1.5958 37800 3.6583 - -
1.6000 37900 3.5662 - -
1.6043 38000 3.6365 3.9035 -
1.6085 38100 3.6313 - -
1.6127 38200 3.8767 - -
1.6169 38300 3.9992 - -
1.6211 38400 3.554 - -
1.6254 38500 3.6862 3.8900 -
1.6296 38600 3.7638 - -
1.6338 38700 3.6716 - -
1.6380 38800 3.8667 - -
1.6423 38900 3.5304 - -
1.6465 39000 3.955 3.8894 -
1.6507 39100 3.4049 - -
1.6549 39200 3.663 - -
1.6591 39300 4.0267 - -
1.6634 39400 3.8868 - -
1.6676 39500 3.8984 3.9277 -
1.6718 39600 3.575 - -
1.6760 39700 3.6966 - -
1.6802 39800 4.0533 - -
1.6845 39900 3.6106 - -
1.6887 40000 3.6468 3.9425 -
1.6929 40100 3.7145 - -
1.6971 40200 3.6602 - -
1.7014 40300 3.5531 - -
1.7056 40400 3.7857 - -
1.7098 40500 3.5586 3.8484 -
1.7140 40600 3.7711 - -
1.7182 40700 3.7135 - -
1.7225 40800 3.8785 - -
1.7267 40900 3.5577 - -
1.7309 41000 3.5783 3.9013 -
1.7351 41100 3.7346 - -
1.7394 41200 3.5098 - -
1.7436 41300 4.0181 - -
1.7478 41400 3.8404 - -
1.7520 41500 3.6327 3.8684 -
1.7562 41600 3.7503 - -
1.7605 41700 3.45 - -
1.7647 41800 3.9138 - -
1.7689 41900 3.6061 - -
1.7731 42000 3.6603 3.7956 -
1.7773 42100 3.6722 - -
1.7816 42200 3.678 - -
1.7858 42300 3.5802 - -
1.7900 42400 3.8253 - -
1.7942 42500 3.7815 3.8192 -
1.7985 42600 3.7021 - -
1.8027 42700 3.4263 - -
1.8069 42800 3.8781 - -
1.8111 42900 3.5784 - -
1.8153 43000 3.9405 3.8100 -
1.8196 43100 3.5516 - -
1.8238 43200 3.8322 - -
1.8280 43300 3.7948 - -
1.8322 43400 3.6175 - -
1.8365 43500 3.5256 3.8552 -
1.8407 43600 3.8199 - -
1.8449 43700 3.6168 - -
1.8491 43800 3.5648 - -
1.8533 43900 3.5584 - -
1.8576 44000 3.7623 3.8202 -
1.8618 44100 3.7884 - -
1.8660 44200 3.6241 - -
1.8702 44300 3.4533 - -
1.8744 44400 3.575 - -
1.8787 44500 3.6981 3.9080 -
1.8829 44600 3.6384 - -
1.8871 44700 3.8267 - -
1.8913 44800 3.5696 - -
1.8956 44900 3.5189 - -
1.8998 45000 3.7528 3.8759 -
1.9040 45100 3.7572 - -
1.9082 45200 3.7283 - -
1.9124 45300 3.6185 - -
1.9167 45400 3.5348 - -
1.9209 45500 3.5366 3.9713 -
1.9251 45600 3.8358 - -
1.9293 45700 3.7831 - -
1.9336 45800 3.7524 - -
1.9378 45900 3.4533 - -
1.9420 46000 3.4622 3.8907 -
1.9462 46100 3.7096 - -
1.9504 46200 3.5447 - -
1.9547 46300 3.601 - -
1.9589 46400 3.6369 - -
1.9631 46500 3.8619 3.8416 -
1.9673 46600 3.6623 - -
1.9715 46700 3.8225 - -
1.9758 46800 3.9126 - -
1.9800 46900 3.8429 - -
1.9842 47000 3.6607 3.8103 -
1.9884 47100 3.5708 - -
1.9927 47200 3.6346 - -
1.9969 47300 3.4577 - -
2.0011 47400 3.4326 - -
2.0053 47500 3.5431 3.8311 -
2.0095 47600 3.4852 - -
2.0138 47700 3.4037 - -
2.0180 47800 3.5685 - -
2.0222 47900 3.2866 - -
2.0264 48000 3.3943 3.9447 -
2.0306 48100 3.3675 - -
2.0349 48200 3.7605 - -
2.0391 48300 4.0646 - -
2.0433 48400 3.4634 - -
2.0475 48500 3.5041 3.8682 -
2.0518 48600 3.6862 - -
2.0560 48700 3.5486 - -
2.0602 48800 3.6148 - -
2.0644 48900 3.3776 - -
2.0686 49000 3.4514 3.8841 -
2.0729 49100 3.4575 - -
2.0771 49200 3.4984 - -
2.0813 49300 3.3978 - -
2.0855 49400 3.644 - -
2.0898 49500 3.6412 3.8866 -
2.0940 49600 3.322 - -
2.0982 49700 3.7186 - -
2.1024 49800 3.3604 - -
2.1066 49900 3.7262 - -
2.1109 50000 3.541 3.8573 -
2.1151 50100 3.4695 - -
2.1193 50200 3.3366 - -
2.1235 50300 3.6556 - -
2.1277 50400 3.4016 - -
2.1320 50500 3.6733 3.9452 -
2.1362 50600 3.7553 - -
2.1404 50700 3.6238 - -
2.1446 50800 3.4566 - -
2.1489 50900 3.7676 - -
2.1531 51000 3.4482 3.8958 -
2.1573 51100 3.409 - -
2.1615 51200 3.9074 - -
2.1657 51300 3.613 - -
2.1700 51400 3.4835 - -
2.1742 51500 3.5494 3.7883 -
2.1784 51600 3.5205 - -
2.1826 51700 3.4232 - -
2.1869 51800 3.6539 - -
2.1911 51900 3.6586 - -
2.1953 52000 3.3321 3.8934 -
2.1995 52100 3.7712 - -
2.2037 52200 3.4973 - -
2.2080 52300 3.5404 - -
2.2122 52400 3.4815 - -
2.2164 52500 3.5586 3.8741 -
2.2206 52600 3.5463 - -
2.2248 52700 3.537 - -
2.2291 52800 3.5299 - -
2.2333 52900 3.5967 - -
2.2375 53000 3.5156 3.8977 -
2.2417 53100 3.6079 - -
2.2460 53200 3.4492 - -
2.2502 53300 3.4611 - -
2.2544 53400 3.1611 - -
2.2586 53500 3.6554 3.8444 -
2.2628 53600 3.473 - -
2.2671 53700 3.8362 - -
2.2713 53800 3.8243 - -
2.2755 53900 3.2957 - -
2.2797 54000 3.4227 3.8651 -
2.2840 54100 3.6771 - -
2.2882 54200 3.5287 - -
2.2924 54300 3.6393 - -
2.2966 54400 3.6447 - -
2.3008 54500 3.1714 3.8695 -
2.3051 54600 3.5703 - -
2.3093 54700 3.6058 - -
2.3135 54800 3.3485 - -
2.3177 54900 3.4143 - -
2.3219 55000 3.461 3.8285 -
2.3262 55100 3.7676 - -
2.3304 55200 3.7192 - -
2.3346 55300 3.3955 - -
2.3388 55400 3.5533 - -
2.3431 55500 3.7335 3.7877 -
2.3473 55600 3.3743 - -
2.3515 55700 3.5598 - -
2.3557 55800 3.5939 - -
2.3599 55900 3.6577 - -
2.3642 56000 3.407 3.7897 -
2.3684 56100 3.5838 - -
2.3726 56200 3.5182 - -
2.3768 56300 3.7881 - -
2.3811 56400 3.772 - -
2.3853 56500 3.5779 3.8028 -
2.3895 56600 3.4765 - -
2.3937 56700 3.5122 - -
2.3979 56800 3.8646 - -
2.4022 56900 3.4861 - -
2.4064 57000 3.4486 3.8668 -
2.4106 57100 3.4319 - -
2.4148 57200 3.5801 - -
2.4190 57300 3.4412 - -
2.4233 57400 3.4917 - -
2.4275 57500 3.8994 3.7693 -
2.4317 57600 3.4321 - -
2.4359 57700 3.4605 - -
2.4402 57800 3.5348 - -
2.4444 57900 3.6156 - -
2.4486 58000 3.6726 3.7413 -
2.4528 58100 3.4447 - -
2.4570 58200 3.5318 - -
2.4613 58300 3.4284 - -
2.4655 58400 3.3426 - -
2.4697 58500 3.5549 3.8398 -
2.4739 58600 3.7305 - -
2.4782 58700 3.4777 - -
2.4824 58800 3.625 - -
2.4866 58900 3.8084 - -
2.4908 59000 3.6772 3.7805 -
2.4950 59100 3.4634 - -
2.4993 59200 3.5926 - -
2.5035 59300 3.303 - -
2.5077 59400 3.5749 - -
2.5119 59500 3.7852 3.8255 -
2.5161 59600 3.6317 - -
2.5204 59700 3.3228 - -
2.5246 59800 3.4541 - -
2.5288 59900 3.5879 - -
2.5330 60000 3.6403 3.7744 -
2.5373 60100 3.5289 - -
2.5415 60200 3.4 - -
2.5457 60300 3.4026 - -
2.5499 60400 3.6348 - -
2.5541 60500 3.3963 3.7309 -
2.5584 60600 3.2838 - -
2.5626 60700 3.8537 - -
2.5668 60800 3.3861 - -
2.5710 60900 3.5289 - -
2.5753 61000 3.7611 3.7404 -
2.5795 61100 3.3036 - -
2.5837 61200 3.4874 - -
2.5879 61300 3.3885 - -
2.5921 61400 3.6008 - -
2.5964 61500 3.7175 3.7685 -
2.6006 61600 3.589 - -
2.6048 61700 3.6725 - -
2.6090 61800 3.3397 - -
2.6132 61900 3.562 - -
2.6175 62000 3.5421 3.7556 -
2.6217 62100 3.462 - -
2.6259 62200 3.329 - -
2.6301 62300 3.4274 - -
2.6344 62400 3.4622 - -
2.6386 62500 3.2924 3.8314 -
2.6428 62600 3.5465 - -
2.6470 62700 3.3618 - -
2.6512 62800 3.2383 - -
2.6555 62900 3.3542 - -
2.6597 63000 3.5209 3.7942 -
2.6639 63100 3.4416 - -
2.6681 63200 3.5881 - -
2.6724 63300 3.7347 - -
2.6766 63400 3.815 - -
2.6808 63500 3.4667 3.7791 -
2.6850 63600 3.342 - -
2.6892 63700 3.6695 - -
2.6935 63800 3.4863 - -
2.6977 63900 3.741 - -
2.7019 64000 3.6267 3.8010 -
2.7061 64100 3.2939 - -
2.7103 64200 3.4422 - -
2.7146 64300 3.7278 - -
2.7188 64400 3.8691 - -
2.7230 64500 3.611 3.7172 -
2.7272 64600 3.5474 - -
2.7315 64700 3.5087 - -
2.7357 64800 3.4489 - -
2.7399 64900 3.6549 - -
2.7441 65000 3.3956 3.7356 -
2.7483 65100 3.5116 - -
2.7526 65200 3.1777 - -
2.7568 65300 3.7644 - -
2.7610 65400 3.6376 - -
2.7652 65500 3.6153 3.7486 -
2.7695 65600 3.2564 - -
2.7737 65700 3.5547 - -
2.7779 65800 3.3283 - -
2.7821 65900 3.4592 - -
2.7863 66000 3.7505 3.7252 -
2.7906 66100 3.3761 - -
2.7948 66200 3.6223 - -
2.7990 66300 3.4702 - -
2.8032 66400 3.8666 - -
2.8074 66500 3.2927 3.7299 -
2.8117 66600 3.5424 - -
2.8159 66700 3.5487 - -
2.8201 66800 3.3343 - -
2.8243 66900 3.3005 - -
2.8286 67000 3.5036 3.7752 -
2.8328 67100 3.4419 - -
2.8370 67200 3.3805 - -
2.8412 67300 3.3591 - -
2.8454 67400 3.738 - -
2.8497 67500 3.268 3.7657 -
2.8539 67600 3.4224 - -
2.8581 67700 3.5734 - -
2.8623 67800 3.3804 - -
2.8666 67900 3.594 - -
2.8708 68000 3.6526 3.7796 -
2.8750 68100 3.7921 - -
2.8792 68200 3.352 - -
2.8834 68300 3.7122 - -
2.8877 68400 3.5739 - -
2.8919 68500 3.3912 3.7359 -
2.8961 68600 3.8863 - -
2.9003 68700 3.6851 - -
2.9045 68800 3.1867 - -
2.9088 68900 3.2456 - -
2.9130 69000 3.447 3.7272 -
2.9172 69100 3.3142 - -
2.9214 69200 3.8019 - -
2.9257 69300 3.6041 - -
2.9299 69400 3.6291 - -
2.9341 69500 3.5412 3.7041 -
2.9383 69600 3.5873 - -
2.9425 69700 3.6207 - -
2.9468 69800 3.5858 - -
2.9510 69900 3.5341 - -
2.9552 70000 3.6644 3.7406 -
2.9594 70100 3.4947 - -
2.9637 70200 3.5763 - -
2.9679 70300 3.6131 - -
2.9721 70400 3.509 - -
2.9763 70500 3.4352 3.7116 -
2.9805 70600 3.3115 - -
2.9848 70700 3.2393 - -
2.9890 70800 3.3738 - -
2.9932 70900 3.424 - -
2.9974 71000 3.7252 3.7152 -
3.0016 71100 3.6013 - -
3.0059 71200 3.407 - -
3.0101 71300 3.2695 - -
3.0143 71400 3.3632 - -
3.0185 71500 2.95 3.7985 -
3.0228 71600 3.164 - -
3.0270 71700 3.4829 - -
3.0312 71800 3.7491 - -
3.0354 71900 3.7257 - -
3.0396 72000 3.701 3.7497 -
3.0439 72100 3.105 - -
3.0481 72200 3.43 - -
3.0523 72300 3.3014 - -
3.0565 72400 3.2578 - -
3.0608 72500 3.4971 3.7966 -
3.0650 72600 3.4542 - -
3.0692 72700 3.4634 - -
3.0734 72800 3.6576 - -
3.0776 72900 3.38 - -
3.0819 73000 3.4615 3.7337 -
3.0861 73100 3.6838 - -
3.0903 73200 3.2183 - -
3.0945 73300 3.3281 - -
3.0987 73400 3.2304 - -
3.1030 73500 3.3314 3.7586 -
3.1072 73600 3.0549 - -
3.1114 73700 3.4578 - -
3.1156 73800 3.3797 - -
3.1199 73900 3.4435 - -
3.1241 74000 3.1522 3.7355 -
3.1283 74100 3.3775 - -
3.1325 74200 3.5751 - -
3.1367 74300 3.5017 - -
3.1410 74400 3.3353 - -
3.1452 74500 3.5746 3.7411 -
3.1494 74600 3.7003 - -
3.1536 74700 3.0499 - -
3.1579 74800 3.3735 - -
3.1621 74900 3.5844 - -
3.1663 75000 3.3551 3.8240 -
3.1705 75100 3.262 - -
3.1747 75200 3.4301 - -
3.1790 75300 3.464 - -
3.1832 75400 3.4751 - -
3.1874 75500 3.5351 3.7465 -
3.1916 75600 3.2933 - -
3.1958 75700 4.0448 - -
3.2001 75800 3.4882 - -
3.2043 75900 3.615 - -
3.2085 76000 3.1492 3.7142 -
3.2127 76100 3.0458 - -
3.2170 76200 3.6002 - -
3.2212 76300 3.3197 - -
3.2254 76400 3.3113 - -
3.2296 76500 3.3607 3.7780 -
3.2338 76600 3.3242 - -
3.2381 76700 3.6477 - -
3.2423 76800 3.1657 - -
3.2465 76900 3.0839 - -
3.2507 77000 3.599 3.7618 -
3.2549 77100 3.1563 - -
3.2592 77200 3.1867 - -
3.2634 77300 3.5676 - -
3.2676 77400 3.6313 - -
3.2718 77500 3.2504 3.7301 -
3.2761 77600 3.2488 - -
3.2803 77700 3.0412 - -
3.2845 77800 3.1514 - -
3.2887 77900 2.9742 - -
3.2929 78000 3.395 3.7579 -
3.2972 78100 3.5513 - -
3.3014 78200 3.3194 - -
3.3056 78300 3.2702 - -
3.3098 78400 3.322 - -
3.3141 78500 3.5357 3.7827 -
3.3183 78600 3.3831 - -
3.3225 78700 3.3878 - -
3.3267 78800 3.2869 - -
3.3309 78900 3.7636 - -
3.3352 79000 3.4089 3.7984 -
3.3394 79100 3.3371 - -
3.3436 79200 3.5966 - -
3.3478 79300 3.8318 - -
3.3520 79400 3.4452 - -
3.3563 79500 3.1789 3.7290 -
3.3605 79600 3.1829 - -
3.3647 79700 3.4624 - -
3.3689 79800 3.3163 - -
3.3732 79900 3.2591 - -
3.3774 80000 3.2375 3.7153 -
3.3816 80100 3.0596 - -
3.3858 80200 3.2673 - -
3.3900 80300 3.8284 - -
3.3943 80400 3.2518 - -
3.3985 80500 3.4214 3.7572 -
3.4027 80600 3.3534 - -
3.4069 80700 3.7609 - -
3.4112 80800 3.7096 - -
3.4154 80900 2.9755 - -
3.4196 81000 3.4585 3.7362 -
3.4238 81100 3.5315 - -
3.4280 81200 3.4276 - -
3.4323 81300 3.5303 - -
3.4365 81400 3.2272 - -
3.4407 81500 2.9614 3.7592 -
3.4449 81600 3.3272 - -
3.4491 81700 3.548 - -
3.4534 81800 3.5806 - -
3.4576 81900 3.2915 - -
3.4618 82000 3.4571 3.7447 -
3.4660 82100 3.2471 - -
3.4703 82200 3.3675 - -
3.4745 82300 3.039 - -
3.4787 82400 3.1737 - -
3.4829 82500 3.5937 3.7527 -
3.4871 82600 3.3723 - -
3.4914 82700 3.5835 - -
3.4956 82800 3.3739 - -
3.4998 82900 3.3891 - -
3.5040 83000 3.5204 3.7398 -
3.5083 83100 3.0925 - -
3.5125 83200 3.2285 - -
3.5167 83300 3.4032 - -
3.5209 83400 3.5367 - -
3.5251 83500 3.1513 3.7454 -
3.5294 83600 3.292 - -
3.5336 83700 3.2018 - -
3.5378 83800 3.4814 - -
3.5420 83900 3.2591 - -
3.5462 84000 3.179 3.7722 -
3.5505 84100 3.3408 - -
3.5547 84200 3.6131 - -
3.5589 84300 3.2299 - -
3.5631 84400 3.3005 - -
3.5674 84500 3.4731 3.7458 -
3.5716 84600 3.2288 - -
3.5758 84700 3.4384 - -
3.5800 84800 3.6438 - -
3.5842 84900 3.3293 - -
3.5885 85000 3.3555 3.7534 -
3.5927 85100 3.4791 - -
3.5969 85200 3.1024 - -
3.6011 85300 3.4605 - -
3.6054 85400 3.4317 - -
3.6096 85500 3.2913 3.7037 -
3.6138 85600 3.3377 - -
3.6180 85700 3.2746 - -
3.6222 85800 3.4173 - -
3.6265 85900 3.4623 - -
3.6307 86000 3.2596 3.7052 -
3.6349 86100 3.2322 - -
3.6391 86200 3.2082 - -
3.6433 86300 3.4993 - -
3.6476 86400 3.3922 - -
3.6518 86500 3.2275 3.6793 -
3.6560 86600 3.3031 - -
3.6602 86700 3.2876 - -
3.6645 86800 3.5403 - -
3.6687 86900 3.3889 - -
3.6729 87000 3.3938 3.6927 -
3.6771 87100 3.3169 - -
3.6813 87200 3.1372 - -
3.6856 87300 3.0958 - -
3.6898 87400 3.1186 - -
3.6940 87500 3.5419 3.6852 -
3.6982 87600 3.6208 - -
3.7025 87700 3.3815 - -
3.7067 87800 2.9388 - -
3.7109 87900 3.2111 - -
3.7151 88000 3.4742 3.6905 -
3.7193 88100 3.2668 - -
3.7236 88200 3.439 - -
3.7278 88300 3.3342 - -
3.7320 88400 3.5079 - -
3.7362 88500 3.4446 3.7126 -
3.7404 88600 3.3036 - -
3.7447 88700 3.323 - -
3.7489 88800 3.2921 - -
3.7531 88900 3.3972 - -
3.7573 89000 3.3132 3.7031 -
3.7616 89100 3.6181 - -
3.7658 89200 3.41 - -
3.7700 89300 3.2602 - -
3.7742 89400 3.3742 - -
3.7784 89500 3.2929 3.7064 -
3.7827 89600 3.1366 - -
3.7869 89700 3.5312 - -
3.7911 89800 3.2735 - -
3.7953 89900 3.3797 - -
3.7996 90000 3.3003 3.7135 -
3.8038 90100 3.483 - -
3.8080 90200 3.2309 - -
3.8122 90300 3.3767 - -
3.8164 90400 2.8296 - -
3.8207 90500 3.361 3.7145 -
3.8249 90600 3.3726 - -
3.8291 90700 3.2925 - -
3.8333 90800 3.5113 - -
3.8375 90900 3.6037 - -
3.8418 91000 3.0925 3.7223 -
3.8460 91100 3.4363 - -
3.8502 91200 3.3181 - -
3.8544 91300 3.4216 - -
3.8587 91400 3.1301 - -
3.8629 91500 3.5791 3.7144 -
3.8671 91600 3.0492 - -
3.8713 91700 3.4513 - -
3.8755 91800 3.7442 - -
3.8798 91900 3.1566 - -
3.8840 92000 3.3871 3.7025 -
3.8882 92100 3.3478 - -
3.8924 92200 3.2922 - -
3.8967 92300 3.0988 - -
3.9009 92400 3.4383 - -
3.9051 92500 3.175 3.7026 -
3.9093 92600 3.3831 - -
3.9135 92700 3.3871 - -
3.9178 92800 3.5747 - -
3.9220 92900 3.272 - -
3.9262 93000 3.4294 3.6876 -
3.9304 93100 3.6332 - -
3.9346 93200 3.626 - -
3.9389 93300 3.5402 - -
3.9431 93400 3.348 - -
3.9473 93500 3.2556 3.6902 -
3.9515 93600 3.5298 - -
3.9558 93700 3.5247 - -
3.9600 93800 3.0763 - -
3.9642 93900 3.2457 - -
3.9684 94000 3.1805 3.6897 -
3.9726 94100 3.3959 - -
3.9769 94200 3.205 - -
3.9811 94300 3.3307 - -
3.9853 94400 3.0448 - -
3.9895 94500 3.0447 3.6906 -
3.9938 94600 3.3314 - -
3.9980 94700 3.4516 - -

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.1
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
8
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for youssefkhalil320/all-MiniLM-L6-v2-five-scores

Finetuned
(187)
this model

Evaluation results