phobert_finetuned

This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Accuracy: 0.3833
  • F1: 0.3818
  • Precision: 0.4337
  • Recall: 0.3833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 250
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.0775 1.0 30 nan 0.375 0.3679 0.4021 0.375
1.084 2.0 60 nan 0.3875 0.3833 0.4203 0.3875
1.0727 3.0 90 nan 0.375 0.3691 0.4075 0.375
1.0743 4.0 120 nan 0.3792 0.3736 0.4007 0.3792
1.0735 5.0 150 nan 0.3875 0.3829 0.4342 0.3875
1.0916 6.0 180 nan 0.375 0.3651 0.3971 0.375
1.0802 7.0 210 nan 0.3792 0.3728 0.4181 0.3792
1.0761 8.0 240 nan 0.3792 0.3586 0.4018 0.3792
1.0793 9.0 270 nan 0.4042 0.4014 0.4436 0.4042
1.0647 10.0 300 nan 0.3958 0.3930 0.4418 0.3958
1.0842 11.0 330 nan 0.375 0.3645 0.3957 0.375
1.0724 12.0 360 nan 0.3792 0.3770 0.4186 0.3792
1.0973 13.0 390 nan 0.4083 0.4108 0.4453 0.4083
1.0667 14.0 420 nan 0.3833 0.3789 0.4315 0.3833
1.0631 15.0 450 nan 0.4 0.3996 0.4392 0.4
1.0837 16.0 480 nan 0.3833 0.3771 0.4097 0.3833
1.073 17.0 510 nan 0.4 0.4002 0.4272 0.4
1.075 18.0 540 nan 0.3708 0.3625 0.4032 0.3708
1.0865 19.0 570 nan 0.3875 0.3839 0.4255 0.3875
1.075 20.0 600 nan 0.3917 0.3872 0.4290 0.3917
1.0884 21.0 630 nan 0.3917 0.3914 0.4301 0.3917
1.0921 22.0 660 nan 0.3917 0.3900 0.4445 0.3917
1.0749 23.0 690 nan 0.3958 0.3955 0.4341 0.3958
1.0535 24.0 720 nan 0.3917 0.3879 0.4297 0.3917
1.058 25.0 750 nan 0.3917 0.3881 0.4361 0.3917
1.0812 26.0 780 nan 0.3958 0.3944 0.4459 0.3958
1.0743 27.0 810 nan 0.3875 0.3844 0.4607 0.3875
1.0721 28.0 840 nan 0.4 0.3982 0.4597 0.4
1.0776 29.0 870 nan 0.3833 0.3800 0.4291 0.3833
1.0815 30.0 900 nan 0.4 0.4006 0.4444 0.4
1.0757 31.0 930 nan 0.3958 0.3975 0.4246 0.3958
1.065 32.0 960 nan 0.3833 0.3800 0.4252 0.3833
1.0669 33.0 990 nan 0.3875 0.3841 0.4173 0.3875
1.0685 34.0 1020 nan 0.3875 0.3852 0.4353 0.3875
1.0687 35.0 1050 nan 0.3792 0.3792 0.4163 0.3792
1.0736 36.0 1080 nan 0.3958 0.3942 0.4350 0.3958
1.0919 37.0 1110 nan 0.3792 0.3718 0.4349 0.3792
1.0905 38.0 1140 nan 0.3875 0.3840 0.4174 0.3875
1.0858 39.0 1170 nan 0.4042 0.4026 0.4337 0.4042
1.0809 40.0 1200 nan 0.375 0.3725 0.4152 0.375
1.0803 41.0 1230 nan 0.3958 0.3957 0.4386 0.3958
1.0688 42.0 1260 nan 0.3875 0.3847 0.4412 0.3875
1.0928 43.0 1290 nan 0.3875 0.3875 0.4485 0.3875
1.0711 44.0 1320 nan 0.3917 0.3914 0.4233 0.3917
1.0761 45.0 1350 nan 0.3958 0.3902 0.4515 0.3958
1.0738 46.0 1380 nan 0.3792 0.3776 0.4134 0.3792
1.0743 47.0 1410 nan 0.3792 0.3759 0.4295 0.3792
1.0849 48.0 1440 nan 0.3833 0.3793 0.4246 0.3833
1.0701 49.0 1470 nan 0.4 0.4002 0.4257 0.4
1.0496 50.0 1500 nan 0.3917 0.3898 0.4398 0.3917
1.0899 51.0 1530 nan 0.3958 0.3946 0.4314 0.3958
1.066 52.0 1560 nan 0.375 0.3725 0.4095 0.375
1.0777 53.0 1590 nan 0.3833 0.3793 0.4119 0.3833
1.0721 54.0 1620 nan 0.3792 0.3744 0.4108 0.3792
1.0887 55.0 1650 nan 0.3792 0.3766 0.4038 0.3792
1.0793 56.0 1680 nan 0.375 0.3725 0.4060 0.375
1.0747 57.0 1710 nan 0.3792 0.3750 0.4157 0.3792
1.0748 58.0 1740 nan 0.3792 0.3730 0.4188 0.3792
1.0589 59.0 1770 nan 0.3833 0.3810 0.4335 0.3833
1.078 60.0 1800 nan 0.3833 0.3841 0.4061 0.3833
1.0798 61.0 1830 nan 0.3833 0.3816 0.4312 0.3833
1.0864 62.0 1860 nan 0.3875 0.3848 0.4313 0.3875
1.074 63.0 1890 nan 0.3833 0.3821 0.4372 0.3833
1.0707 64.0 1920 nan 0.375 0.3726 0.4062 0.375
1.0793 65.0 1950 nan 0.375 0.3723 0.4046 0.375
1.0849 66.0 1980 nan 0.3917 0.3921 0.4408 0.3917
1.0722 67.0 2010 nan 0.3875 0.3841 0.4191 0.3875
1.0646 68.0 2040 nan 0.3958 0.3931 0.4241 0.3958
1.0771 69.0 2070 nan 0.3958 0.3950 0.4379 0.3958
1.0761 70.0 2100 nan 0.3917 0.3915 0.4408 0.3917
1.0759 71.0 2130 nan 0.3875 0.3862 0.4146 0.3875
1.0727 72.0 2160 nan 0.3792 0.3784 0.4375 0.3792
1.0758 73.0 2190 nan 0.3875 0.3829 0.4411 0.3875
1.0848 74.0 2220 nan 0.375 0.3713 0.4352 0.375
1.0659 75.0 2250 nan 0.3958 0.3927 0.4305 0.3958
1.0784 76.0 2280 nan 0.3792 0.3743 0.4097 0.3792
1.0831 77.0 2310 nan 0.3833 0.3776 0.4187 0.3833
1.074 78.0 2340 nan 0.3833 0.3789 0.4226 0.3833
1.08 79.0 2370 nan 0.375 0.3727 0.4187 0.375
1.0744 80.0 2400 nan 0.3917 0.3917 0.4181 0.3917
1.0568 81.0 2430 nan 0.3708 0.3681 0.4320 0.3708
1.074 82.0 2460 nan 0.3875 0.3853 0.4158 0.3875
1.0822 83.0 2490 nan 0.3917 0.3897 0.4406 0.3917
1.0735 84.0 2520 nan 0.3833 0.3820 0.4121 0.3833
1.0679 85.0 2550 nan 0.3875 0.3860 0.4324 0.3875
1.0775 86.0 2580 nan 0.375 0.3670 0.4306 0.375
1.0683 87.0 2610 nan 0.3792 0.3736 0.4168 0.3792
1.0611 88.0 2640 nan 0.3792 0.3738 0.4278 0.3792
1.0844 89.0 2670 nan 0.3833 0.3808 0.4212 0.3833
1.0628 90.0 2700 nan 0.3917 0.3891 0.4244 0.3917
1.0639 91.0 2730 nan 0.3833 0.3779 0.4159 0.3833
1.0758 92.0 2760 nan 0.3708 0.3677 0.4278 0.3708
1.0991 93.0 2790 nan 0.375 0.3726 0.4107 0.375
1.0733 94.0 2820 nan 0.3833 0.3781 0.4232 0.3833
1.0632 95.0 2850 nan 0.3875 0.3856 0.4115 0.3875
1.0791 96.0 2880 nan 0.3667 0.3595 0.4048 0.3667
1.0633 97.0 2910 nan 0.3792 0.3768 0.4145 0.3792
1.074 98.0 2940 nan 0.375 0.3723 0.4008 0.375
1.0983 99.0 2970 nan 0.375 0.3695 0.4072 0.375
1.0959 100.0 3000 nan 0.3792 0.3757 0.4054 0.3792
1.0695 101.0 3030 nan 0.3917 0.3869 0.4205 0.3917
1.0708 102.0 3060 nan 0.3958 0.3921 0.4264 0.3958
1.0741 103.0 3090 nan 0.3792 0.3714 0.4111 0.3792
1.0773 104.0 3120 nan 0.3833 0.3784 0.4154 0.3833
1.0824 105.0 3150 nan 0.375 0.3683 0.4067 0.375
1.071 106.0 3180 nan 0.3708 0.3668 0.4033 0.3708
1.0631 107.0 3210 nan 0.3833 0.3808 0.4136 0.3833
1.0824 108.0 3240 nan 0.375 0.3691 0.4184 0.375
1.0779 109.0 3270 nan 0.3708 0.3644 0.4080 0.3708
1.0739 110.0 3300 nan 0.3792 0.3775 0.4139 0.3792
1.0715 111.0 3330 nan 0.3917 0.3878 0.4404 0.3917
1.0633 112.0 3360 nan 0.3792 0.3777 0.4302 0.3792
1.063 113.0 3390 nan 0.375 0.3729 0.4195 0.375
1.078 114.0 3420 nan 0.3875 0.3826 0.4360 0.3875
1.0737 115.0 3450 nan 0.3875 0.3857 0.4427 0.3875
1.067 116.0 3480 nan 0.3917 0.3876 0.4393 0.3917
1.0581 117.0 3510 nan 0.375 0.3718 0.4174 0.375
1.0691 118.0 3540 nan 0.375 0.3695 0.4130 0.375
1.0589 119.0 3570 nan 0.375 0.3718 0.4174 0.375
1.0616 120.0 3600 nan 0.3708 0.3650 0.4020 0.3708
1.0541 121.0 3630 nan 0.375 0.3715 0.4067 0.375
1.0699 122.0 3660 nan 0.3875 0.3831 0.4214 0.3875
1.0697 123.0 3690 nan 0.3958 0.3925 0.4297 0.3958
1.0744 124.0 3720 nan 0.3917 0.3881 0.4271 0.3917
1.0817 125.0 3750 nan 0.3875 0.3816 0.4359 0.3875
1.085 126.0 3780 nan 0.3708 0.3680 0.4096 0.3708
1.0918 127.0 3810 nan 0.3792 0.3772 0.4240 0.3792
1.071 128.0 3840 nan 0.3917 0.3904 0.4357 0.3917
1.0684 129.0 3870 nan 0.4 0.3996 0.4426 0.4
1.0647 130.0 3900 nan 0.3792 0.3769 0.4430 0.3792
1.0814 131.0 3930 nan 0.375 0.3721 0.4137 0.375
1.0806 132.0 3960 nan 0.3833 0.3801 0.4489 0.3833
1.0877 133.0 3990 nan 0.3875 0.3861 0.4332 0.3875
1.0694 134.0 4020 nan 0.3917 0.3891 0.4266 0.3917
1.071 135.0 4050 nan 0.3917 0.3899 0.4383 0.3917
1.0647 136.0 4080 nan 0.3917 0.3904 0.4357 0.3917
1.0877 137.0 4110 nan 0.3917 0.3902 0.4327 0.3917
1.0661 138.0 4140 nan 0.3875 0.3855 0.4266 0.3875
1.0855 139.0 4170 nan 0.3917 0.3912 0.4464 0.3917
1.0824 140.0 4200 nan 0.3917 0.3888 0.4509 0.3917
1.0615 141.0 4230 nan 0.3917 0.3905 0.4384 0.3917
1.0684 142.0 4260 nan 0.3958 0.3942 0.4474 0.3958
1.0514 143.0 4290 nan 0.3875 0.3857 0.4259 0.3875
1.0786 144.0 4320 nan 0.3917 0.3899 0.4294 0.3917
1.0908 145.0 4350 nan 0.3875 0.3863 0.4493 0.3875
1.0945 146.0 4380 nan 0.3875 0.3850 0.4275 0.3875
1.0635 147.0 4410 nan 0.3792 0.3769 0.4199 0.3792
1.0573 148.0 4440 nan 0.3917 0.3904 0.4378 0.3917
1.0602 149.0 4470 nan 0.3875 0.3855 0.4331 0.3875
1.0824 150.0 4500 nan 0.3958 0.3938 0.4369 0.3958
1.0759 151.0 4530 nan 0.3958 0.3939 0.4391 0.3958
1.0373 152.0 4560 nan 0.4 0.3985 0.4577 0.4
1.0891 153.0 4590 nan 0.3875 0.3863 0.4493 0.3875
1.0836 154.0 4620 nan 0.3917 0.3909 0.4426 0.3917
1.043 155.0 4650 nan 0.3917 0.3903 0.4350 0.3917
1.0686 156.0 4680 nan 0.3875 0.3863 0.4493 0.3875
1.0733 157.0 4710 nan 0.3833 0.3810 0.4452 0.3833
1.0777 158.0 4740 nan 0.3833 0.3802 0.4461 0.3833
1.0842 159.0 4770 nan 0.3917 0.3898 0.4398 0.3917
1.0586 160.0 4800 nan 0.3875 0.3859 0.4372 0.3875
1.072 161.0 4830 nan 0.375 0.3730 0.4301 0.375
1.0853 162.0 4860 nan 0.3875 0.3868 0.4237 0.3875
1.061 163.0 4890 nan 0.3792 0.3759 0.4202 0.3792
1.0806 164.0 4920 nan 0.3917 0.3903 0.4470 0.3917
1.0873 165.0 4950 nan 0.3958 0.3937 0.4431 0.3958
1.0696 166.0 4980 nan 0.3958 0.3943 0.4504 0.3958
1.0828 167.0 5010 nan 0.3958 0.3937 0.4431 0.3958
1.069 168.0 5040 nan 0.3917 0.3900 0.4433 0.3917
1.0798 169.0 5070 nan 0.3833 0.3817 0.4329 0.3833
1.0801 170.0 5100 nan 0.3875 0.3857 0.4364 0.3875
1.055 171.0 5130 nan 0.3833 0.3820 0.4364 0.3833
1.0737 172.0 5160 nan 0.3833 0.3824 0.4305 0.3833
1.0805 173.0 5190 nan 0.3833 0.3821 0.4275 0.3833
1.0783 174.0 5220 nan 0.3917 0.3912 0.4353 0.3917
1.0823 175.0 5250 nan 0.3833 0.3820 0.4330 0.3833
1.0732 176.0 5280 nan 0.3917 0.3900 0.4433 0.3917
1.0651 177.0 5310 nan 0.3875 0.3863 0.4436 0.3875
1.0865 178.0 5340 nan 0.3792 0.3783 0.4367 0.3792
1.0693 179.0 5370 nan 0.3958 0.3947 0.4551 0.3958
1.0764 180.0 5400 nan 0.3833 0.3811 0.4267 0.3833
1.069 181.0 5430 nan 0.3875 0.3859 0.4372 0.3875
1.0872 182.0 5460 nan 0.3792 0.3777 0.4302 0.3792
1.0919 183.0 5490 nan 0.3958 0.3939 0.4439 0.3958
1.0715 184.0 5520 nan 0.3875 0.3859 0.4372 0.3875
1.0569 185.0 5550 nan 0.3792 0.3767 0.4195 0.3792
1.0665 186.0 5580 nan 0.3958 0.3937 0.4408 0.3958
1.0702 187.0 5610 nan 0.3875 0.3856 0.4249 0.3875
1.0809 188.0 5640 nan 0.3792 0.3777 0.4302 0.3792
1.0659 189.0 5670 nan 0.3917 0.3899 0.4406 0.3917
1.0581 190.0 5700 nan 0.3833 0.3816 0.4305 0.3833
1.0776 191.0 5730 nan 0.3875 0.3862 0.4406 0.3875
1.0802 192.0 5760 nan 0.3958 0.3942 0.4474 0.3958
1.0845 193.0 5790 nan 0.3917 0.3899 0.4534 0.3917
1.0512 194.0 5820 nan 0.3917 0.3912 0.4512 0.3917
1.0702 195.0 5850 nan 0.3958 0.3940 0.4466 0.3958
1.0794 196.0 5880 nan 0.3875 0.3862 0.4406 0.3875
1.0817 197.0 5910 nan 0.3917 0.3902 0.4440 0.3917
1.0798 198.0 5940 nan 0.3958 0.3942 0.4474 0.3958
1.0764 199.0 5970 nan 0.3958 0.3944 0.4511 0.3958
1.0625 200.0 6000 nan 0.3833 0.3812 0.44 0.3833
1.0746 201.0 6030 nan 0.3917 0.3905 0.4478 0.3917
1.0912 202.0 6060 nan 0.3792 0.3770 0.4213 0.3792
1.0557 203.0 6090 nan 0.3833 0.3812 0.44 0.3833
1.057 204.0 6120 nan 0.3875 0.3850 0.4275 0.3875
1.0635 205.0 6150 nan 0.3875 0.3852 0.4302 0.3875
1.0744 206.0 6180 nan 0.375 0.3721 0.4196 0.375
1.0939 207.0 6210 nan 0.3875 0.3852 0.4302 0.3875
1.0703 208.0 6240 nan 0.3792 0.3755 0.4308 0.3792
1.0812 209.0 6270 nan 0.3708 0.3676 0.4247 0.3708
1.0797 210.0 6300 nan 0.3875 0.3854 0.4311 0.3875
1.0783 211.0 6330 nan 0.3833 0.3807 0.4215 0.3833
1.0645 212.0 6360 nan 0.3917 0.3895 0.4345 0.3917
1.075 213.0 6390 nan 0.375 0.3723 0.4225 0.375
1.0549 214.0 6420 nan 0.3917 0.3893 0.4319 0.3917
1.0732 215.0 6450 nan 0.375 0.3726 0.4258 0.375
1.081 216.0 6480 nan 0.3708 0.3674 0.4239 0.3708
1.0623 217.0 6510 nan 0.3833 0.3793 0.4335 0.3833
1.066 218.0 6540 nan 0.3833 0.3793 0.4335 0.3833
1.0761 219.0 6570 nan 0.3833 0.3795 0.4342 0.3833
1.0528 220.0 6600 nan 0.3917 0.3899 0.4406 0.3917
1.0577 221.0 6630 nan 0.3792 0.3755 0.4308 0.3792
1.0796 222.0 6660 nan 0.3875 0.3846 0.4381 0.3875
1.0571 223.0 6690 nan 0.3875 0.3859 0.4372 0.3875
1.081 224.0 6720 nan 0.3875 0.3859 0.4372 0.3875
1.0761 225.0 6750 nan 0.3792 0.3772 0.4240 0.3792
1.0667 226.0 6780 nan 0.3833 0.3810 0.4362 0.3833
1.0838 227.0 6810 nan 0.375 0.3723 0.4225 0.375
1.0441 228.0 6840 nan 0.375 0.3723 0.4225 0.375
1.053 229.0 6870 nan 0.375 0.3729 0.4293 0.375
1.0648 230.0 6900 nan 0.3792 0.3769 0.4328 0.3792
1.0704 231.0 6930 nan 0.3792 0.3758 0.4347 0.3792
1.0909 232.0 6960 nan 0.375 0.3718 0.4313 0.375
1.0405 233.0 6990 nan 0.3833 0.3808 0.4354 0.3833
1.0957 234.0 7020 nan 0.375 0.3718 0.4313 0.375
1.0526 235.0 7050 nan 0.3792 0.3758 0.4347 0.3792
1.07 236.0 7080 nan 0.3708 0.3674 0.4239 0.3708
1.081 237.0 7110 nan 0.375 0.3718 0.4313 0.375
1.0567 238.0 7140 nan 0.375 0.3718 0.4313 0.375
1.0558 239.0 7170 nan 0.375 0.3715 0.4274 0.375
1.1036 240.0 7200 nan 0.375 0.3715 0.4274 0.375
1.0691 241.0 7230 nan 0.3792 0.3769 0.4328 0.3792
1.0531 242.0 7260 nan 0.3833 0.3821 0.4372 0.3833
1.0711 243.0 7290 nan 0.3833 0.3818 0.4337 0.3833
1.0812 244.0 7320 nan 0.3833 0.3821 0.4372 0.3833
1.0796 245.0 7350 nan 0.3833 0.3821 0.4372 0.3833
1.0536 246.0 7380 nan 0.3833 0.3818 0.4337 0.3833
1.0766 247.0 7410 nan 0.3833 0.3818 0.4337 0.3833
1.0803 248.0 7440 nan 0.3833 0.3818 0.4337 0.3833
1.075 249.0 7470 nan 0.3833 0.3818 0.4337 0.3833
1.0688 250.0 7500 nan 0.3833 0.3818 0.4337 0.3833

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
36
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ynclinebk/phobert_finetuned

Base model

vinai/phobert-base
Finetuned
(39)
this model