🦜 EmertonMonarch-7B

EmertonOmniBeagle-7B-dpo is a DPO fine-tune of mlabonne/Monarch-7B using the yleo/emerton_dpo_pairs_judge preference dataset created from Intel/orca_dpo_pairs by replacing gpt 3.5 answer by a gpt4 Turbo answer. Then, LLM-Blender is used to judge between GPT4 and GPT4 Turbo.

πŸ” Applications

This model uses a context window of 8k. It is compatible with different templates, like chatml and Llama's chat template.

πŸ† Evaluation

Open LLM Leaderboard

To come...

πŸ’» Usage

!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "yleo/EmertonMonarch-7B"
messages = [{"role": "user", "content": "How to improve LLM fine-tuning?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
18
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yleo/EmertonMonarch-7B

Finetuned
(8)
this model
Adapters
1 model
Finetunes
2 models
Merges
2 models
Quantizations
1 model

Dataset used to train yleo/EmertonMonarch-7B