Motion Consistency Model: Accelerating Video Diffusion with Disentangled Motion-Appearance Distillation

[Project page] [Code] [arXiv] [Demo] [Colab]

TL;DR: Our motion consistency model not only accelerates text2video diffusion model sampling process, but also can benefit from an additional high-quality image dataset to improve the frame quality of generated videos.

Our motion consistency model not only distill the motion prior from the teacher to accelerate sampling, but also can benefit from an additional high-quality image dataset to improve the frame quality of generated videos.

Usage

from typing import Optional

import torch
from diffusers import (
    AnimateDiffPipeline,
    DiffusionPipeline,
    LCMScheduler,
    MotionAdapter,
)
from diffusers.utils import export_to_video
from peft import PeftModel


def main():
    # select model_path from ["animatediff-laion", "animatediff-webvid",
    # "modelscopet2v-webvid", "modelscopet2v-laion", "modelscopet2v-anime",
    # "modelscopet2v-real", "modelscopet2v-3d-cartoon"]
    model_path = "modelscopet2v-laion"
    prompts = ["A cat walking on a treadmill", "A dog walking on a treadmill"]
    num_inference_steps = 4

    model_id = "yhzhai/mcm"
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if "animatediff" in model_path:
        pipeline = get_animatediff_pipeline()
    elif "modelscope" in model_path:
        pipeline = get_modelscope_pipeline()
    else:
        raise ValueError(f"Unknown pipeline {model_path}")

    lora = PeftModel.from_pretrained(
        pipeline.unet,
        model_id,
        subfolder=model_path,
        adapter_name="pretrained_lora",
        torch_device="cpu",
    )
    lora.merge_and_unload()
    pipeline.unet = lora

    pipeline = pipeline.to(device)
    output = pipeline(
        prompt=prompts,
        num_frames=16,
        guidance_scale=1.0,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator("cpu").manual_seed(42),
    ).frames
    if not isinstance(output, list):
        output = [output[i] for i in range(output.shape[0])]

    for j in range(len(prompts)):
        export_to_video(
            output[j],
            f"{j}-{model_path}.mp4",
            fps=7,
        )


def get_animatediff_pipeline(
    real_variant: Optional[str] = "realvision",
    motion_module_path: str = "guoyww/animatediff-motion-adapter-v1-5-2",
):
    if real_variant is None:
        model_id = "runwayml/stable-diffusion-v1-5"
    elif real_variant == "epicrealism":
        model_id = "emilianJR/epiCRealism"
    elif real_variant == "realvision":
        model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
    else:
        raise ValueError(f"Unknown real_variant {real_variant}")

    adapter = MotionAdapter.from_pretrained(
        motion_module_path, torch_dtype=torch.float16
    )
    pipe = AnimateDiffPipeline.from_pretrained(
        model_id,
        motion_adapter=adapter,
        torch_dtype=torch.float16,
    )
    scheduler = LCMScheduler.from_pretrained(
        model_id,
        subfolder="scheduler",
        timestep_scaling=4.0,
        clip_sample=False,
        timestep_spacing="linspace",
        beta_schedule="linear",
        beta_start=0.00085,
        beta_end=0.012,
        steps_offset=1,
    )
    pipe.scheduler = scheduler
    pipe.enable_vae_slicing()
    return pipe


def get_modelscope_pipeline():
    model_id = "ali-vilab/text-to-video-ms-1.7b"
    pipe = DiffusionPipeline.from_pretrained(
        model_id, torch_dtype=torch.float16, variant="fp16"
    )
    scheduler = LCMScheduler.from_pretrained(
        model_id,
        subfolder="scheduler",
        timestep_scaling=4.0,
    )
    pipe.scheduler = scheduler
    pipe.enable_vae_slicing()

    return pipe


if __name__ == "__main__":
    main()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Space using yhzhai/mcm 1