|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- automatic-speech-recognition |
|
- ./sample_speech.py |
|
- generated_from_trainer |
|
model-index: |
|
- name: ko-xlsr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ko-xlsr |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4651 |
|
- Cer: 0.0828 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 40 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 6.3673 | 3.17 | 1500 | 0.6104 | 0.1606 | |
|
| 0.656 | 6.33 | 3000 | 0.4318 | 0.1129 | |
|
| 0.4729 | 9.5 | 4500 | 0.4010 | 0.1028 | |
|
| 0.3789 | 12.66 | 6000 | 0.3867 | 0.0977 | |
|
| 0.3166 | 15.83 | 7500 | 0.3857 | 0.0936 | |
|
| 0.267 | 18.99 | 9000 | 0.3891 | 0.0912 | |
|
| 0.2286 | 22.16 | 10500 | 0.4074 | 0.0910 | |
|
| 0.1967 | 25.32 | 12000 | 0.4079 | 0.0878 | |
|
| 0.1712 | 28.49 | 13500 | 0.4289 | 0.0865 | |
|
| 0.1493 | 31.65 | 15000 | 0.4456 | 0.0850 | |
|
| 0.1333 | 34.82 | 16500 | 0.4573 | 0.0843 | |
|
| 0.1191 | 37.98 | 18000 | 0.4633 | 0.0833 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|