wav2vec2-large-xls-r-2b-armenian-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-2b on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5166
  • Wer: 0.7397

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 120
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.7057 2.38 200 0.7731 0.8091
0.5797 4.76 400 0.8279 0.7804
0.4341 7.14 600 1.0343 0.8285
0.3135 9.52 800 1.0551 0.8066
0.2409 11.9 1000 1.0686 0.7897
0.1998 14.29 1200 1.1329 0.7766
0.1729 16.67 1400 1.3234 0.8567
0.1533 19.05 1600 1.2432 0.8160
0.1354 21.43 1800 1.2780 0.7954
0.12 23.81 2000 1.2228 0.8054
0.1175 26.19 2200 1.3484 0.8129
0.1141 28.57 2400 1.2881 0.9130
0.1053 30.95 2600 1.1972 0.7910
0.0954 33.33 2800 1.3702 0.8048
0.0842 35.71 3000 1.3963 0.7960
0.0793 38.1 3200 1.4690 0.7991
0.0707 40.48 3400 1.5045 0.8085
0.0745 42.86 3600 1.4749 0.8004
0.0693 45.24 3800 1.5047 0.7960
0.0646 47.62 4000 1.4216 0.7997
0.0555 50.0 4200 1.4676 0.8029
0.056 52.38 4400 1.4273 0.8104
0.0465 54.76 4600 1.3999 0.7841
0.046 57.14 4800 1.6130 0.8473
0.0404 59.52 5000 1.5586 0.7841
0.0403 61.9 5200 1.3959 0.7653
0.0404 64.29 5400 1.5318 0.8041
0.0365 66.67 5600 1.5300 0.7854
0.0338 69.05 5800 1.5051 0.7885
0.0307 71.43 6000 1.5647 0.7935
0.0235 73.81 6200 1.4919 0.8154
0.0268 76.19 6400 1.5259 0.8060
0.0275 78.57 6600 1.3985 0.7897
0.022 80.95 6800 1.5515 0.8154
0.017 83.33 7000 1.5737 0.7647
0.0205 85.71 7200 1.4876 0.7572
0.0174 88.1 7400 1.6331 0.7829
0.0188 90.48 7600 1.5108 0.7685
0.0134 92.86 7800 1.7125 0.7866
0.0125 95.24 8000 1.6042 0.7635
0.0133 97.62 8200 1.4608 0.7478
0.0272 100.0 8400 1.4784 0.7309
0.0133 102.38 8600 1.4471 0.7459
0.0094 104.76 8800 1.4852 0.7272
0.0103 107.14 9000 1.5679 0.7409
0.0088 109.52 9200 1.5090 0.7309
0.0077 111.9 9400 1.4994 0.7290
0.0068 114.29 9600 1.5008 0.7340
0.0054 116.67 9800 1.5166 0.7390
0.0052 119.05 10000 1.5166 0.7397

Framework versions

  • Transformers 4.14.1
  • Pytorch 1.10.0
  • Datasets 1.16.1
  • Tokenizers 0.10.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train yerevann/x-r-hy