AI Image Detector
Model Description
This model is designed to detect whether an image is real or AI-generated. It uses Vision Transformer (ViT) architecture to provide accurate classification.
Model Usage
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import torch
# تحميل النموذج والمعالج
processor = ViTImageProcessor.from_pretrained("C:/Users/SUPREME TECH/Desktop/SAM3/ai-image-detector")
model = ViTForImageClassification.from_pretrained("C:/Users/SUPREME TECH/Desktop/SAM3/ai-image-detector")
def detect_image(image_path):
# فتح وتجهيز الصورة
image = Image.open(image_path)
if image.mode != 'RGB':
image = image.convert('RGB')
# معالجة الصورة
inputs = processor(images=image, return_tensors="pt")
# الحصول على التنبؤات
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# تحليل النتائج
scores = predictions[0].tolist()
results = [
{"label": "REAL", "score": scores[0]},
{"label": "FAKE", "score": scores[1]}
]
# ترتيب النتائج حسب درجة الثقة
results.sort(key=lambda x: x["score"], reverse=True)
return {
"prediction": results[0]["label"],
"confidence": f"{results[0]['score']*100:.2f}%",
"detailed_scores": [
f"{r['label']}: {r['score']*100:.2f}%"
for r in results
]
}
# كود للاختبار
if __name__ == "__main__":
# يمكنك تغيير مسار الصورة هنا
image_path = "path/to/your/image.jpg"
try:
result = detect_image(image_path)
print("\nنتائج تحليل الصورة:")
print(f"التصنيف: {result['prediction']}")
print(f"درجة الثقة: {result['confidence']}")
print("\nالتفاصيل:")
for score in result['detailed_scores']:
print(f"- {score}")
except Exception as e:
print(f"حدث خطأ: {str(e)}")
Classes
The model classifies images into two categories:
- Real Image (0): The image is real and not AI-generated.
- AI Generated (1): The image is generated by AI.
Technical Details
- Model Architecture: Vision Transformer (ViT)
- Input: Images (RGB)
- Output: Binary classification with confidence score
- Max Image Size: 224x224 (automatically resized)
Requirements
transformers>=4.30.0
torch>=2.0.0
Pillow>=9.0.0
Limitations
- Best performance with clear, high-quality images.
- May have reduced accuracy with heavily edited photos.
- Designed for general image detection.
Web Integration Example
async function detectImage(imageFile) {
const formData = new FormData();
formData.append('image', imageFile);
const response = await fetch('YOUR_API_ENDPOINT', {
method: 'POST',
body: formData
});
return await response.json();
}
Developer
- Created by: yaya36095
- License: MIT
- Repository: https://huggingface.co/yaya36095/ai-image-detector
- Downloads last month
- 61