language:
- en
license: apache-2.0
base_model: mistralai/Mixtral-8x7B-v0.1
inference:
parameters:
temperature: 0.5
widget:
- messages:
- role: user
content: What is your favorite condiment?
This model is compressed from the Mixtral-8x7B. Using Low-Rank Approximation, I removed 10 billion parameters from the MLP experts' matrices, enough to run the model on a single A100 80GB GPU using half precision.
Without being retrained or fine-tuned, the model still retains its core performance:
Model Card for minixtral
Instruction format
This format must be strictly respected, otherwise the model will generate sub-optimal outputs.
The template used to build a prompt for the Instruct model is defined as follows:
<s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
Note that <s>
and </s>
are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings.
As reference, here is the pseudo-code used to tokenize instructions during fine-tuning:
def tokenize(text):
return tok.encode(text, add_special_tokens=False)
[BOS_ID] +
tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_1) + [EOS_ID] +
…
tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_N) + [EOS_ID]
In the pseudo-code above, note that the tokenize
method should not add a BOS or EOS token automatically, but should add a prefix space.
In the Transformers library, one can use chat templates which make sure the right format is applied.
Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
outputs = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))