Helsinki-shirsh-finetuned-translation-english-to-hindi

This model is a fine-tuned version of yashcode00/Helsinki-shirsh-finetuned-translation-english-to-hindi on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.0769
  • Validation Loss: 2.3327
  • Epoch: 499

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
2.7823 2.3889 0
2.1907 2.3327 1
2.0769 2.3327 2
2.0727 2.3327 3
2.0724 2.3327 4
2.0795 2.3327 5
2.0738 2.3327 6
2.0750 2.3327 7
2.0693 2.3327 8
2.0698 2.3327 9
2.0733 2.3327 10
2.0804 2.3327 11
2.0734 2.3327 12
2.0691 2.3327 13
2.0754 2.3327 14
2.0709 2.3327 15
2.0728 2.3327 16
2.0756 2.3327 17
2.0733 2.3327 18
2.0747 2.3327 19
2.0740 2.3327 20
2.0722 2.3327 21
2.0763 2.3327 22
2.0775 2.3327 23
2.0747 2.3327 24
2.0776 2.3327 25
2.0729 2.3327 26
2.0713 2.3327 27
2.0718 2.3327 28
2.0779 2.3327 29
2.0746 2.3327 30
2.0733 2.3327 31
2.0738 2.3327 32
2.0740 2.3327 33
2.0760 2.3327 34
2.0759 2.3327 35
2.0716 2.3327 36
2.0766 2.3327 37
2.0792 2.3327 38
2.0666 2.3327 39
2.0732 2.3327 40
2.0726 2.3327 41
2.0755 2.3327 42
2.0722 2.3327 43
2.0742 2.3327 44
2.0720 2.3327 45
2.0695 2.3327 46
2.0705 2.3327 47
2.0724 2.3327 48
2.0678 2.3327 49
2.0726 2.3327 50
2.0740 2.3327 51
2.0770 2.3327 52
2.0754 2.3327 53
2.0796 2.3327 54
2.0720 2.3327 55
2.0720 2.3327 56
2.0742 2.3327 57
2.0757 2.3327 58
2.0764 2.3327 59
2.0730 2.3327 60
2.0757 2.3327 61
2.0675 2.3327 62
2.0766 2.3327 63
2.0790 2.3327 64
2.0672 2.3327 65
2.0748 2.3327 66
2.0779 2.3327 67
2.0742 2.3327 68
2.0719 2.3327 69
2.0726 2.3327 70
2.0706 2.3327 71
2.0681 2.3327 72
2.0707 2.3327 73
2.0704 2.3327 74
2.0761 2.3327 75
2.0707 2.3327 76
2.0740 2.3327 77
2.0745 2.3327 78
2.0716 2.3327 79
2.0815 2.3327 80
2.0720 2.3327 81
2.0743 2.3327 82
2.0778 2.3327 83
2.0707 2.3327 84
2.0715 2.3327 85
2.0737 2.3327 86
2.0784 2.3327 87
2.0746 2.3327 88
2.0743 2.3327 89
2.0721 2.3327 90
2.0736 2.3327 91
2.0724 2.3327 92
2.0705 2.3327 93
2.0751 2.3327 94
2.0773 2.3327 95
2.0786 2.3327 96
2.0753 2.3327 97
2.0693 2.3327 98
2.0759 2.3327 99
2.0745 2.3327 100
2.0734 2.3327 101
2.0687 2.3327 102
2.0789 2.3327 103
2.0733 2.3327 104
2.0803 2.3327 105
2.0793 2.3327 106
2.0769 2.3327 107
2.0784 2.3327 108
2.0754 2.3327 109
2.0719 2.3327 110
2.0739 2.3327 111
2.0699 2.3327 112
2.0754 2.3327 113
2.0737 2.3327 114
2.0748 2.3327 115
2.0733 2.3327 116
2.0698 2.3327 117
2.0697 2.3327 118
2.0721 2.3327 119
2.0766 2.3327 120
2.0725 2.3327 121
2.0777 2.3327 122
2.0728 2.3327 123
2.0766 2.3327 124
2.0733 2.3327 125
2.0782 2.3327 126
2.0706 2.3327 127
2.0759 2.3327 128
2.0746 2.3327 129
2.0766 2.3327 130
2.0738 2.3327 131
2.0682 2.3327 132
2.0766 2.3327 133
2.0709 2.3327 134
2.0763 2.3327 135
2.0742 2.3327 136
2.0710 2.3327 137
2.0729 2.3327 138
2.0752 2.3327 139
2.0709 2.3327 140
2.0750 2.3327 141
2.0760 2.3327 142
2.0787 2.3327 143
2.0722 2.3327 144
2.0784 2.3327 145
2.0766 2.3327 146
2.0718 2.3327 147
2.0755 2.3327 148
2.0781 2.3327 149
2.0719 2.3327 150
2.0729 2.3327 151
2.0704 2.3327 152
2.0761 2.3327 153
2.0744 2.3327 154
2.0746 2.3327 155
2.0807 2.3327 156
2.0703 2.3327 157
2.0750 2.3327 158
2.0724 2.3327 159
2.0708 2.3327 160
2.0749 2.3327 161
2.0755 2.3327 162
2.0730 2.3327 163
2.0730 2.3327 164
2.0747 2.3327 165
2.0738 2.3327 166
2.0694 2.3327 167
2.0724 2.3327 168
2.0729 2.3327 169
2.0719 2.3327 170
2.0738 2.3327 171
2.0710 2.3327 172
2.0752 2.3327 173
2.0742 2.3327 174
2.0747 2.3327 175
2.0721 2.3327 176
2.0718 2.3327 177
2.0703 2.3327 178
2.0739 2.3327 179
2.0710 2.3327 180
2.0759 2.3327 181
2.0705 2.3327 182
2.0705 2.3327 183
2.0749 2.3327 184
2.0750 2.3327 185
2.0745 2.3327 186
2.0712 2.3327 187
2.0768 2.3327 188
2.0714 2.3327 189
2.0739 2.3327 190
2.0737 2.3327 191
2.0774 2.3327 192
2.0725 2.3327 193
2.0781 2.3327 194
2.0714 2.3327 195
2.0728 2.3327 196
2.0781 2.3327 197
2.0718 2.3327 198
2.0723 2.3327 199
2.0736 2.3327 200
2.0743 2.3327 201
2.0738 2.3327 202
2.0747 2.3327 203
2.0704 2.3327 204
2.0714 2.3327 205
2.0764 2.3327 206
2.0804 2.3327 207
2.0784 2.3327 208
2.0768 2.3327 209
2.0784 2.3327 210
2.0686 2.3327 211
2.0763 2.3327 212
2.0736 2.3327 213
2.0671 2.3327 214
2.0737 2.3327 215
2.0754 2.3327 216
2.0796 2.3327 217
2.0742 2.3327 218
2.0747 2.3327 219
2.0723 2.3327 220
2.0777 2.3327 221
2.0729 2.3327 222
2.0718 2.3327 223
2.0724 2.3327 224
2.0650 2.3327 225
2.0709 2.3327 226
2.0748 2.3327 227
2.0701 2.3327 228
2.0745 2.3327 229
2.0741 2.3327 230
2.0713 2.3327 231
2.0739 2.3327 232
2.0732 2.3327 233
2.0726 2.3327 234
2.0704 2.3327 235
2.0742 2.3327 236
2.0715 2.3327 237
2.0726 2.3327 238
2.0767 2.3327 239
2.0727 2.3327 240
2.0756 2.3327 241
2.0714 2.3327 242
2.0713 2.3327 243
2.0723 2.3327 244
2.0765 2.3327 245
2.0699 2.3327 246
2.0727 2.3327 247
2.0761 2.3327 248
2.0764 2.3327 249
2.0773 2.3327 250
2.0730 2.3327 251
2.0736 2.3327 252
2.0757 2.3327 253
2.0744 2.3327 254
2.0765 2.3327 255
2.0749 2.3327 256
2.0731 2.3327 257
2.0682 2.3327 258
2.0709 2.3327 259
2.0754 2.3327 260
2.0723 2.3327 261
2.0764 2.3327 262
2.0748 2.3327 263
2.0742 2.3327 264
2.0741 2.3327 265
2.0685 2.3327 266
2.0699 2.3327 267
2.0687 2.3327 268
2.0693 2.3327 269
2.0814 2.3327 270
2.0743 2.3327 271
2.0741 2.3327 272
2.0740 2.3327 273
2.0780 2.3327 274
2.0727 2.3327 275
2.0732 2.3327 276
2.0766 2.3327 277
2.0753 2.3327 278
2.0737 2.3327 279
2.0703 2.3327 280
2.0725 2.3327 281
2.0710 2.3327 282
2.0752 2.3327 283
2.0756 2.3327 284
2.0776 2.3327 285
2.0715 2.3327 286
2.0704 2.3327 287
2.0733 2.3327 288
2.0731 2.3327 289
2.0765 2.3327 290
2.0745 2.3327 291
2.0755 2.3327 292
2.0728 2.3327 293
2.0701 2.3327 294
2.0745 2.3327 295
2.0730 2.3327 296
2.0698 2.3327 297
2.0753 2.3327 298
2.0694 2.3327 299
2.0764 2.3327 300
2.0728 2.3327 301
2.0719 2.3327 302
2.0717 2.3327 303
2.0746 2.3327 304
2.0717 2.3327 305
2.0766 2.3327 306
2.0697 2.3327 307
2.0746 2.3327 308
2.0744 2.3327 309
2.0727 2.3327 310
2.0771 2.3327 311
2.0696 2.3327 312
2.0745 2.3327 313
2.0755 2.3327 314
2.0794 2.3327 315
2.0761 2.3327 316
2.0755 2.3327 317
2.0736 2.3327 318
2.0798 2.3327 319
2.0708 2.3327 320
2.0757 2.3327 321
2.0681 2.3327 322
2.0770 2.3327 323
2.0703 2.3327 324
2.0760 2.3327 325
2.0742 2.3327 326
2.0774 2.3327 327
2.0757 2.3327 328
2.0737 2.3327 329
2.0708 2.3327 330
2.0769 2.3327 331
2.0755 2.3327 332
2.0751 2.3327 333
2.0778 2.3327 334
2.0719 2.3327 335
2.0756 2.3327 336
2.0716 2.3327 337
2.0735 2.3327 338
2.0718 2.3327 339
2.0742 2.3327 340
2.0705 2.3327 341
2.0768 2.3327 342
2.0737 2.3327 343
2.0694 2.3327 344
2.0710 2.3327 345
2.0760 2.3327 346
2.0742 2.3327 347
2.0689 2.3327 348
2.0770 2.3327 349
2.0736 2.3327 350
2.0815 2.3327 351
2.0809 2.3327 352
2.0719 2.3327 353
2.0777 2.3327 354
2.0732 2.3327 355
2.0748 2.3327 356
2.0750 2.3327 357
2.0757 2.3327 358
2.0767 2.3327 359
2.0679 2.3327 360
2.0698 2.3327 361
2.0766 2.3327 362
2.0769 2.3327 363
2.0735 2.3327 364
2.0715 2.3327 365
2.0756 2.3327 366
2.0742 2.3327 367
2.0752 2.3327 368
2.0694 2.3327 369
2.0736 2.3327 370
2.0731 2.3327 371
2.0744 2.3327 372
2.0745 2.3327 373
2.0748 2.3327 374
2.0744 2.3327 375
2.0758 2.3327 376
2.0730 2.3327 377
2.0754 2.3327 378
2.0739 2.3327 379
2.0766 2.3327 380
2.0733 2.3327 381
2.0714 2.3327 382
2.0731 2.3327 383
2.0741 2.3327 384
2.0753 2.3327 385
2.0682 2.3327 386
2.0696 2.3327 387
2.0679 2.3327 388
2.0723 2.3327 389
2.0689 2.3327 390
2.0695 2.3327 391
2.0761 2.3327 392
2.0741 2.3327 393
2.0735 2.3327 394
2.0729 2.3327 395
2.0767 2.3327 396
2.0724 2.3327 397
2.0765 2.3327 398
2.0734 2.3327 399
2.0732 2.3327 400
2.0734 2.3327 401
2.0738 2.3327 402
2.0738 2.3327 403
2.0713 2.3327 404
2.0765 2.3327 405
2.0741 2.3327 406
2.0704 2.3327 407
2.0679 2.3327 408
2.0776 2.3327 409
2.0737 2.3327 410
2.0763 2.3327 411
2.0736 2.3327 412
2.0728 2.3327 413
2.0764 2.3327 414
2.0781 2.3327 415
2.0706 2.3327 416
2.0718 2.3327 417
2.0770 2.3327 418
2.0740 2.3327 419
2.0709 2.3327 420
2.0715 2.3327 421
2.0762 2.3327 422
2.0740 2.3327 423
2.0763 2.3327 424
2.0707 2.3327 425
2.0719 2.3327 426
2.0758 2.3327 427
2.0743 2.3327 428
2.0726 2.3327 429
2.0763 2.3327 430
2.0780 2.3327 431
2.0726 2.3327 432
2.0739 2.3327 433
2.0772 2.3327 434
2.0758 2.3327 435
2.0715 2.3327 436
2.0778 2.3327 437
2.0692 2.3327 438
2.0732 2.3327 439
2.0717 2.3327 440
2.0721 2.3327 441
2.0790 2.3327 442
2.0711 2.3327 443
2.0710 2.3327 444
2.0713 2.3327 445
2.0768 2.3327 446
2.0781 2.3327 447
2.0720 2.3327 448
2.0754 2.3327 449
2.0768 2.3327 450
2.0691 2.3327 451
2.0742 2.3327 452
2.0727 2.3327 453
2.0758 2.3327 454
2.0715 2.3327 455
2.0729 2.3327 456
2.0689 2.3327 457
2.0776 2.3327 458
2.0733 2.3327 459
2.0746 2.3327 460
2.0742 2.3327 461
2.0758 2.3327 462
2.0762 2.3327 463
2.0693 2.3327 464
2.0766 2.3327 465
2.0712 2.3327 466
2.0723 2.3327 467
2.0746 2.3327 468
2.0720 2.3327 469
2.0732 2.3327 470
2.0723 2.3327 471
2.0747 2.3327 472
2.0738 2.3327 473
2.0784 2.3327 474
2.0760 2.3327 475
2.0746 2.3327 476
2.0752 2.3327 477
2.0788 2.3327 478
2.0742 2.3327 479
2.0768 2.3327 480
2.0728 2.3327 481
2.0754 2.3327 482
2.0768 2.3327 483
2.0700 2.3327 484
2.0736 2.3327 485
2.0717 2.3327 486
2.0747 2.3327 487
2.0692 2.3327 488
2.0775 2.3327 489
2.0729 2.3327 490
2.0727 2.3327 491
2.0733 2.3327 492
2.0734 2.3327 493
2.0706 2.3327 494
2.0725 2.3327 495
2.0715 2.3327 496
2.0756 2.3327 497
2.0777 2.3327 498
2.0769 2.3327 499

Framework versions

  • Transformers 4.34.1
  • TensorFlow 2.12.0
  • Datasets 2.1.0
  • Tokenizers 0.14.1
Downloads last month
59
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yashcode00/Helsinki-shirsh-finetuned-translation-english-to-hindi

Unable to build the model tree, the base model loops to the model itself. Learn more.