How to Get Started with the Model

  import torch
  from transformers import AutoModelForCausalLM, BitsAndBytesConfig
  from peft import PeftModel, PeftConfig

  config = PeftConfig.from_pretrained("yamete4/codegen-350M-mono-QLoRa-flytech")
  model = AutoModelForCausalLM.from_pretrained("shpotes/codegen-350M-mono",
                                                quantization_config=BitsAndBytesConfig(config),)
  peft_model = PeftModel.from_pretrained(model, "yamete4/codegen-350M-mono-QLoRa-flytech")

  text = "Help me manage my subscriptions!?"

  inputs = tokenizer(text, return_tensors="pt").to(0)
  outputs = perf_model.generate(inputs.input_ids, max_new_tokens=250, do_sample=False)

  print(tokenizer.decode(outputs[0], skip_special_tokens=False))

Framework versions

  • PEFT 0.9.0
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yamete4/codegen-350M-mono-QLoRa-flytech

Adapter
(1)
this model

Dataset used to train yamete4/codegen-350M-mono-QLoRa-flytech

Space using yamete4/codegen-350M-mono-QLoRa-flytech 1