Safetensors
English
t5
multi-document
long-context
Long Context
MDCure-FlanT5-Base / README.md
pybeebee's picture
Update README.md
a47a78e verified
---
license: apache-2.0
datasets:
- yale-nlp/MDCure-72k
language:
- en
base_model:
- google/flan-t5-base
tags:
- multi-document
- long-context
- Long Context
---
# MDCure-FlanT5-Base
[πŸ“„ Paper](https://arxiv.org/pdf/2410.23463) | [πŸ€— HF Collection](https://huggingface.co/collections/yale-nlp/mdcure-6724914875e87f41e5445395) | [βš™οΈ GitHub Repo](https://github.com/yale-nlp/MDCure)
## Introduction
**MDCure** is an effective and scalable procedure for generating high-quality multi-document (MD) instruction tuning data to improve MD capabilities of LLMs. Using MDCure, we construct a suite of MD instruction datasets complementary to collections such as [FLAN](https://github.com/google-research/FLAN) and fine-tune a variety of already instruction-tuned LLMs from the FlanT5, Qwen2, and LLAMA3.1 model families, up to 70B parameters in size. We additionally introduce **MDCureRM**, an evaluator model specifically designed for the MD setting to filter and select high-quality MD instruction data in a cost-effective, RM-as-a-judge fashion. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks show MDCure consistently improves performance over pre-trained baselines and over corresponding base models by up to 75.5%.
We release MDCure datasets of size 12k, 36k, and 72k. We also release MDCureRM and the best MDCure'd model for each architecture/size combination. To access all our models and datasets, please visit our [HF Collection](https://huggingface.co/collections/yale-nlp/mdcure-6724914875e87f41e5445395). For further details regarding dataset construction, please see our [paper](https://arxiv.org/pdf/2410.23463) and [Github repo](https://github.com/yale-nlp/MDCure). For additional details regarding how to use **yale-nlp/MDCure-FlanT5-Base**, please see below.
<p align="center">
<img src="fig1.png" width="90%">
</p>
<p align="center" style="margin-top: 0; padding-top: 0;">
<em>The MDCure pipeline generates diverse multi-document instructions, filters them via fine-grained scoring by MDCureRM, and tunes a base LLM to enhance its multi-document capabilities.</em>
</p>
## Model Details
**yale-nlp/MDCure-FlanT5-Base** is initialized from [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) and fine-tuned on the [MDCure-72k](https://huggingface.co/datasets/yale-nlp/MDCure-72k) dataset.
## Requirements
We recommend using the latest version of HF Transformers, or any `transformers>4.35.0`, to avoid any potential versioning errors when using this model.
## Quickstart
Below we provide a code snippet demonstrating how to load the tokenizer and model and generate content in response to an input context concerning multiple source documents and a related question or instruction. We strongly recommend to separate the texts and/or instruction using `\n\n` or `<doc-sep>` to maintain consistency with the format of the data used during training.
```python
model = AutoModelForSeq2SeqLM.from_pretrained("yale-nlp/MDCure-FlanT5-Base", device_map='auto',torch_dtype="auto",)
tokenizer = AutoTokenizer.from_pretrained("yale-nlp/MDCure-FlanT5-Base")
source_text_1 = ...
source_text_2 = ...
source_text_3 = ...
input_text = f"{source_text_1}\n\n{source_text_2}\n\n{source_text_3}\n\nWhat happened in CHAMPAIGN regarding Lovie Smith and the 2019 defense improvements? Respond with 1-2 sentences."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device)
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## All MDCure Models
We open-source our custom multi-document instruction scoring model, MDCureRM, as well as our best MDCure'd models at the following links:
| Model | Huggingface Repo | Description |
|---------------------------|---------------------|------------------------------|
| **MDCureRM** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCureRM) | Multi-objective reward model to score and filter MD instruction data more cheaply and effectively than GPT-3.5-Turbo |
| **MDCure-FlanT5-Base** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-FlanT5-Base) | **FlanT5-Base** fine-tuned with MDCure-72k |
| **MDCure-FlanT5-Large** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-FlanT5-Large) | **FlanT5-Large** fine-tuned with MDCure-72k |
| **MDCure-Qwen2-1.5B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
| **MDCure-Qwen2-7B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
| **MDCure-LLAMA3.1-8B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
| **MDCure-LLAMA3.1-70B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-72 |
## Citation
If you find our work useful, please cite our paper as:
```bibtex
@article{liu2024mdcure,
title={MDCure: A Scalable Pipeline for Multi-Document Instruction-Following},
author={Gabrielle Kaili-May Liu and Bowen Shi and Avi Caciularu and Idan Szpektor and Arman Cohan},
journal={arXiv preprint arXiv:2410.23463},
year={2024},
url={https://arxiv.org/abs/2410.23463}
}
```