|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:244856 |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
widget: |
|
- source_sentence: Bulan apa inflasi sebesar 0,63 persen terjadi pada tahun 2013? |
|
sentences: |
|
- Pada bulan Mei 2013 terjadi inflasi sebesar 0,2 persen |
|
- Nilai Tukar Petani (NTP) April 2024 sebesar 116,79 atau turun 2,18 persen. |
|
- Posisi Kredit Perbankan<sup>1</sup>dalam Rupiah dan Valuta Asing Menurut Sektor |
|
Ekonomi (miliar rupiah), 2016-2018 |
|
- source_sentence: Berapa persen penurunan Nilai Tukar Petani NTP Februari 2017 |
|
sentences: |
|
- Produksi Tanaman Pangan Angka Ramalan II Tahun 2015 |
|
- Nilai Tukar Petani (NTP) Februari 2017 Sebesar 100,33 Atau Turun 0,58 Persen |
|
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Juni 2024 |
|
- source_sentence: analisis industri pariwisata indonesia tahun 2013 |
|
sentences: |
|
- Ringkasan Neraca Arus Dana, Triwulan IV, 2012), (Miliar Rupiah) |
|
- Pengeluaran Untuk Konsumsi Penduduk Indonesia September 2014 |
|
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan |
|
Negara, Desember 2020 |
|
- source_sentence: Sosial ekonomi Indonesia bulan November 2020 |
|
sentences: |
|
- Pos Kesehatan Desa |
|
- Jumlah Wisman Pada Januari 2011 Naik 11,14 Persen dan Penumpang Angkutan Udara |
|
Domestik Pada Januari 2011 Turun 6,88 Persen |
|
- Laporan Bulanan Data Sosial Ekonomi September 2017 |
|
- source_sentence: Tahun berapa Rupiah terdepresiasi 0,23 persen terhadap Dolar Amerika? |
|
sentences: |
|
- 'Nilai Impor Menurut Negara Asal Utama (Nilai CIF: juta US$), 2000-2023' |
|
- Ringkasan Neraca Arus Dana Triwulan Pertama, 2002, (Miliar Rupiah) |
|
- Depresiasi Rupiah terhadap Dolar Amerika pada tahun 2016 sebesar 0,5 persen. |
|
datasets: |
|
- yahyaabd/allstats-semantic-search-synthetic-dataset-v2 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstats semantic search mini v2 eval |
|
type: allstats-semantic-search-mini-v2-eval |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9838643974678674 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8951406685580494 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstat semantic search mini v2 test |
|
type: allstat-semantic-search-mini-v2-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.98307083670705 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8922084062478435 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [allstats-semantic-search-synthetic-dataset-v2](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [allstats-semantic-search-synthetic-dataset-v2](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("yahyaabd/allstats-semantic-search-mini-model-v2") |
|
# Run inference |
|
sentences = [ |
|
'Tahun berapa Rupiah terdepresiasi 0,23 persen terhadap Dolar Amerika?', |
|
'Depresiasi Rupiah terhadap Dolar Amerika pada tahun 2016 sebesar 0,5 persen.', |
|
'Ringkasan Neraca Arus Dana Triwulan Pertama, 2002, (Miliar Rupiah)', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `allstats-semantic-search-mini-v2-eval` and `allstat-semantic-search-mini-v2-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | allstats-semantic-search-mini-v2-eval | allstat-semantic-search-mini-v2-test | |
|
|:--------------------|:--------------------------------------|:-------------------------------------| |
|
| pearson_cosine | 0.9839 | 0.9831 | |
|
| **spearman_cosine** | **0.8951** | **0.8922** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### allstats-semantic-search-synthetic-dataset-v2 |
|
|
|
* Dataset: [allstats-semantic-search-synthetic-dataset-v2](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2) at [c76f31a](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2/tree/c76f31abb3f2d3a2edd9895b9f5e896bf7c84f34) |
|
* Size: 244,856 training samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 12.75 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.81 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------| |
|
| <code>Dtaa harg konsymen edesaan (non-makann) 201</code> | <code>Statistik Harga Konsumen Perdesaan Kelompok Nonmakanan (Data 2013)</code> | <code>0.95</code> | |
|
| <code>Bagaimna konidsi keuamgan rymah atngga Indonsia 2020-2022?</code> | <code>Statistik Perusahaan Perikanan 2007</code> | <code>0.1</code> | |
|
| <code>Tingkat hunian kamar hotel tahun 2023</code> | <code>Tingkat Penghunian Kamar Hotel 2023</code> | <code>0.99</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### allstats-semantic-search-synthetic-dataset-v2 |
|
|
|
* Dataset: [allstats-semantic-search-synthetic-dataset-v2](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2) at [c76f31a](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2/tree/c76f31abb3f2d3a2edd9895b9f5e896bf7c84f34) |
|
* Size: 52,469 evaluation samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 13.04 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.01 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:---------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:------------------| |
|
| <code>Bulan apa NTP mengalami kenaikan 0,25 persen?</code> | <code>Jumlah Wisatawan Mancanegara Bulan Agustus 2009 Turun 4,49 Persen Dibandingkan Bulan Sebelumnya.</code> | <code>0.0</code> | |
|
| <code>Sebutksn keempa komositi tang disebutkn besert persentae mrajin persagangannya.</code> | <code>Marjin Perdagangan Minyak Goreng 3,86 Persen, Terigu 5,92 Persen, Garam 23,74 Persen, Dan Susu Bubuk 13,02 Persen</code> | <code>1.0</code> | |
|
| <code>Data kemiskinan per kabupaten/kota tahun 2007</code> | <code>Data dan Informasi Kemiskinan 2007 Buku 2: Kabupaten/Kota</code> | <code>0.87</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 8 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 8 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-mini-v2-eval_spearman_cosine | allstat-semantic-search-mini-v2-test_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:---------------:|:-----------------------------------------------------:|:----------------------------------------------------:| |
|
| 0.1307 | 500 | 0.0963 | 0.0657 | 0.6836 | - | |
|
| 0.2614 | 1000 | 0.0558 | 0.0428 | 0.7480 | - | |
|
| 0.3921 | 1500 | 0.0403 | 0.0335 | 0.7665 | - | |
|
| 0.5227 | 2000 | 0.0324 | 0.0285 | 0.7744 | - | |
|
| 0.6534 | 2500 | 0.0284 | 0.0255 | 0.7987 | - | |
|
| 0.7841 | 3000 | 0.0246 | 0.0225 | 0.7883 | - | |
|
| 0.9148 | 3500 | 0.0217 | 0.0217 | 0.7964 | - | |
|
| 1.0455 | 4000 | 0.0193 | 0.0187 | 0.8111 | - | |
|
| 1.1762 | 4500 | 0.017 | 0.0174 | 0.8086 | - | |
|
| 1.3068 | 5000 | 0.0163 | 0.0170 | 0.8157 | - | |
|
| 1.4375 | 5500 | 0.0157 | 0.0161 | 0.8000 | - | |
|
| 1.5682 | 6000 | 0.015 | 0.0156 | 0.8133 | - | |
|
| 1.6989 | 6500 | 0.0146 | 0.0146 | 0.8194 | - | |
|
| 1.8296 | 7000 | 0.014 | 0.0140 | 0.8103 | - | |
|
| 1.9603 | 7500 | 0.013 | 0.0132 | 0.8205 | - | |
|
| 2.0910 | 8000 | 0.0111 | 0.0126 | 0.8353 | - | |
|
| 2.2216 | 8500 | 0.0102 | 0.0123 | 0.8407 | - | |
|
| 2.3523 | 9000 | 0.0101 | 0.0118 | 0.8389 | - | |
|
| 2.4830 | 9500 | 0.01 | 0.0115 | 0.8444 | - | |
|
| 2.6137 | 10000 | 0.0097 | 0.0111 | 0.8456 | - | |
|
| 2.7444 | 10500 | 0.0097 | 0.0105 | 0.8524 | - | |
|
| 2.8751 | 11000 | 0.0091 | 0.0102 | 0.8526 | - | |
|
| 3.0058 | 11500 | 0.0088 | 0.0100 | 0.8561 | - | |
|
| 3.1364 | 12000 | 0.0069 | 0.0095 | 0.8619 | - | |
|
| 3.2671 | 12500 | 0.0071 | 0.0094 | 0.8534 | - | |
|
| 3.3978 | 13000 | 0.0068 | 0.0092 | 0.8648 | - | |
|
| 3.5285 | 13500 | 0.0069 | 0.0093 | 0.8638 | - | |
|
| 3.6592 | 14000 | 0.0071 | 0.0091 | 0.8548 | - | |
|
| 3.7899 | 14500 | 0.0065 | 0.0085 | 0.8711 | - | |
|
| 3.9205 | 15000 | 0.0064 | 0.0084 | 0.8622 | - | |
|
| 4.0512 | 15500 | 0.0061 | 0.0080 | 0.8675 | - | |
|
| 4.1819 | 16000 | 0.0051 | 0.0082 | 0.8673 | - | |
|
| 4.3126 | 16500 | 0.0052 | 0.0080 | 0.8659 | - | |
|
| 4.4433 | 17000 | 0.0053 | 0.0078 | 0.8669 | - | |
|
| 4.5740 | 17500 | 0.0053 | 0.0077 | 0.8690 | - | |
|
| 4.7047 | 18000 | 0.005 | 0.0076 | 0.8758 | - | |
|
| 4.8353 | 18500 | 0.0048 | 0.0074 | 0.8700 | - | |
|
| 4.9660 | 19000 | 0.0049 | 0.0072 | 0.8785 | - | |
|
| 5.0967 | 19500 | 0.0041 | 0.0070 | 0.8795 | - | |
|
| 5.2274 | 20000 | 0.0039 | 0.0071 | 0.8803 | - | |
|
| 5.3581 | 20500 | 0.0039 | 0.0071 | 0.8843 | - | |
|
| 5.4888 | 21000 | 0.0041 | 0.0070 | 0.8818 | - | |
|
| 5.6194 | 21500 | 0.0039 | 0.0069 | 0.8812 | - | |
|
| 5.7501 | 22000 | 0.0038 | 0.0068 | 0.8868 | - | |
|
| 5.8808 | 22500 | 0.0038 | 0.0067 | 0.8831 | - | |
|
| 6.0115 | 23000 | 0.0037 | 0.0066 | 0.8869 | - | |
|
| 6.1422 | 23500 | 0.003 | 0.0065 | 0.8888 | - | |
|
| 6.2729 | 24000 | 0.0031 | 0.0064 | 0.8879 | - | |
|
| 6.4036 | 24500 | 0.0032 | 0.0064 | 0.8881 | - | |
|
| 6.5342 | 25000 | 0.003 | 0.0062 | 0.8919 | - | |
|
| 6.6649 | 25500 | 0.0031 | 0.0062 | 0.8919 | - | |
|
| 6.7956 | 26000 | 0.0031 | 0.0061 | 0.8910 | - | |
|
| 6.9263 | 26500 | 0.003 | 0.0061 | 0.8911 | - | |
|
| 7.0570 | 27000 | 0.0028 | 0.0061 | 0.8925 | - | |
|
| 7.1877 | 27500 | 0.0025 | 0.0061 | 0.8922 | - | |
|
| 7.3183 | 28000 | 0.0026 | 0.0060 | 0.8944 | - | |
|
| 7.4490 | 28500 | 0.0026 | 0.0061 | 0.8953 | - | |
|
| 7.5797 | 29000 | 0.0026 | 0.0060 | 0.8948 | - | |
|
| 7.7104 | 29500 | 0.0025 | 0.0060 | 0.8941 | - | |
|
| 7.8411 | 30000 | 0.0025 | 0.0059 | 0.8950 | - | |
|
| 7.9718 | 30500 | 0.0025 | 0.0059 | 0.8951 | - | |
|
| 8.0 | 30608 | - | - | - | 0.8922 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.1 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |