SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the bps-publication-title-pairs dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: id
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstat-semantic-search-mpnet-base-v2-sts")
# Run inference
sentences = [
'Laporan keuangan pemerintah provinsi periode 2003-2006',
'Statistik Keuangan Provinsi 2003-2006',
'Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode ISIC 2013-2014',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstat-semantic-dev
andallstat-semantic-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstat-semantic-dev | allstat-semantic-test |
---|---|---|
pearson_cosine | 0.9709 | 0.9674 |
spearman_cosine | 0.8819 | 0.8747 |
Training Details
Training Dataset
bps-publication-title-pairs
- Dataset: bps-publication-title-pairs at 833f738
- Size: 42,138 training samples
- Columns:
query
,doc_title
, andscore
- Approximate statistics based on the first 1000 samples:
query doc_title score type string string float details - min: 5 tokens
- mean: 10.71 tokens
- max: 60 tokens
- min: 5 tokens
- mean: 12.58 tokens
- max: 52 tokens
- min: 0.0
- mean: 0.53
- max: 1.0
- Samples:
query doc_title score Hasil riset mobilitas Jabodetabek tahun 2023
Statistik Komuter Jabodetabek Hasil Survei Komuter Jabodetabek 2023
0.85
Indeks harga konsumen di Indonesia tahun 2017 (82 kota)
Harga Konsumen Beberapa Barang dan Jasa Kelompok Sandang di 82 Kota di Indonesia 2017
0.15
Laporan sektor bangunan Indonesia Q4 2009
Indikator Konstruksi Triwulan IV Tahun 2009
0.91
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-publication-title-pairs
- Dataset: bps-publication-title-pairs at 833f738
- Size: 2,634 evaluation samples
- Columns:
query
,doc_title
, andscore
- Approximate statistics based on the first 1000 samples:
query doc_title score type string string float details - min: 6 tokens
- mean: 10.71 tokens
- max: 28 tokens
- min: 5 tokens
- mean: 12.57 tokens
- max: 39 tokens
- min: 0.0
- mean: 0.55
- max: 1.0
- Samples:
query doc_title score Statistik tebu Indonesia tahun 2018
Direktori Perusahaan Perkebunan Karet Indonesia 2018
0.1
Data industri makanan dan minuman 2017
Statistik Upah Buruh Tani di Perdesaan 2018
0.2
Biaya hidup di Gorontalo tahun 2018
Survei Biaya Hidup (SBH) 2018 Gorontalo
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | allstat-semantic-dev_spearman_cosine | allstat-semantic-test_spearman_cosine |
---|---|---|---|---|---|
0.0380 | 100 | 0.0498 | 0.0301 | 0.7942 | - |
0.0759 | 200 | 0.0274 | 0.0231 | 0.8115 | - |
0.1139 | 300 | 0.0238 | 0.0194 | 0.8151 | - |
0.1519 | 400 | 0.0203 | 0.0181 | 0.8169 | - |
0.1898 | 500 | 0.02 | 0.0184 | 0.8188 | - |
0.2278 | 600 | 0.0208 | 0.0170 | 0.8229 | - |
0.2658 | 700 | 0.0182 | 0.0176 | 0.8209 | - |
0.3037 | 800 | 0.0187 | 0.0165 | 0.8260 | - |
0.3417 | 900 | 0.0182 | 0.0169 | 0.8237 | - |
0.3797 | 1000 | 0.0187 | 0.0166 | 0.8232 | - |
0.4176 | 1100 | 0.019 | 0.0170 | 0.8261 | - |
0.4556 | 1200 | 0.0186 | 0.0178 | 0.8206 | - |
0.4935 | 1300 | 0.0185 | 0.0173 | 0.8190 | - |
0.5315 | 1400 | 0.0188 | 0.0183 | 0.8172 | - |
0.5695 | 1500 | 0.018 | 0.0166 | 0.8192 | - |
0.6074 | 1600 | 0.0193 | 0.0168 | 0.8240 | - |
0.6454 | 1700 | 0.016 | 0.0152 | 0.8315 | - |
0.6834 | 1800 | 0.0178 | 0.0163 | 0.8263 | - |
0.7213 | 1900 | 0.0174 | 0.0150 | 0.8320 | - |
0.7593 | 2000 | 0.0172 | 0.0152 | 0.8290 | - |
0.7973 | 2100 | 0.0156 | 0.0158 | 0.8284 | - |
0.8352 | 2200 | 0.0164 | 0.0143 | 0.8313 | - |
0.8732 | 2300 | 0.0169 | 0.0165 | 0.8349 | - |
0.9112 | 2400 | 0.0147 | 0.0150 | 0.8368 | - |
0.9491 | 2500 | 0.0163 | 0.0148 | 0.8314 | - |
0.9871 | 2600 | 0.0149 | 0.0137 | 0.8379 | - |
1.0251 | 2700 | 0.0117 | 0.0134 | 0.8415 | - |
1.0630 | 2800 | 0.0124 | 0.0129 | 0.8375 | - |
1.1010 | 2900 | 0.0109 | 0.0124 | 0.8459 | - |
1.1390 | 3000 | 0.0109 | 0.0123 | 0.8445 | - |
1.1769 | 3100 | 0.0107 | 0.0126 | 0.8433 | - |
1.2149 | 3200 | 0.0105 | 0.0131 | 0.8427 | - |
1.2528 | 3300 | 0.0117 | 0.0130 | 0.8434 | - |
1.2908 | 3400 | 0.0107 | 0.0126 | 0.8448 | - |
1.3288 | 3500 | 0.0116 | 0.0119 | 0.8490 | - |
1.3667 | 3600 | 0.0114 | 0.0124 | 0.8394 | - |
1.4047 | 3700 | 0.011 | 0.0127 | 0.8408 | - |
1.4427 | 3800 | 0.0116 | 0.0128 | 0.8400 | - |
1.4806 | 3900 | 0.0117 | 0.0121 | 0.8451 | - |
1.5186 | 4000 | 0.0129 | 0.0125 | 0.8443 | - |
1.5566 | 4100 | 0.0117 | 0.0122 | 0.8464 | - |
1.5945 | 4200 | 0.012 | 0.0117 | 0.8468 | - |
1.6325 | 4300 | 0.011 | 0.0122 | 0.8485 | - |
1.6705 | 4400 | 0.0121 | 0.0112 | 0.8557 | - |
1.7084 | 4500 | 0.0119 | 0.0110 | 0.8570 | - |
1.7464 | 4600 | 0.0105 | 0.0113 | 0.8519 | - |
1.7844 | 4700 | 0.0101 | 0.0113 | 0.8479 | - |
1.8223 | 4800 | 0.0111 | 0.0116 | 0.8499 | - |
1.8603 | 4900 | 0.0108 | 0.0117 | 0.8520 | - |
1.8983 | 5000 | 0.0111 | 0.0111 | 0.8509 | - |
1.9362 | 5100 | 0.0112 | 0.0111 | 0.8546 | - |
1.9742 | 5200 | 0.0104 | 0.0115 | 0.8507 | - |
2.0121 | 5300 | 0.0095 | 0.0105 | 0.8553 | - |
2.0501 | 5400 | 0.0077 | 0.0106 | 0.8562 | - |
2.0881 | 5500 | 0.007 | 0.0104 | 0.8575 | - |
2.1260 | 5600 | 0.0075 | 0.0101 | 0.8619 | - |
2.1640 | 5700 | 0.0077 | 0.0104 | 0.8568 | - |
2.2020 | 5800 | 0.0073 | 0.0103 | 0.8588 | - |
2.2399 | 5900 | 0.0076 | 0.0101 | 0.8598 | - |
2.2779 | 6000 | 0.0072 | 0.0101 | 0.8602 | - |
2.3159 | 6100 | 0.0076 | 0.0104 | 0.8589 | - |
2.3538 | 6200 | 0.007 | 0.0101 | 0.8592 | - |
2.3918 | 6300 | 0.0084 | 0.0104 | 0.8547 | - |
2.4298 | 6400 | 0.0077 | 0.0102 | 0.8594 | - |
2.4677 | 6500 | 0.008 | 0.0102 | 0.8606 | - |
2.5057 | 6600 | 0.0075 | 0.0101 | 0.8596 | - |
2.5437 | 6700 | 0.0072 | 0.0105 | 0.8587 | - |
2.5816 | 6800 | 0.0079 | 0.0105 | 0.8588 | - |
2.6196 | 6900 | 0.0078 | 0.0098 | 0.8605 | - |
2.6576 | 7000 | 0.0075 | 0.0100 | 0.8593 | - |
2.6955 | 7100 | 0.008 | 0.0097 | 0.8649 | - |
2.7335 | 7200 | 0.0074 | 0.0100 | 0.8602 | - |
2.7715 | 7300 | 0.0069 | 0.0098 | 0.8628 | - |
2.8094 | 7400 | 0.008 | 0.0097 | 0.8615 | - |
2.8474 | 7500 | 0.007 | 0.0097 | 0.8639 | - |
2.8853 | 7600 | 0.0071 | 0.0093 | 0.8642 | - |
2.9233 | 7700 | 0.0077 | 0.0102 | 0.8605 | - |
2.9613 | 7800 | 0.008 | 0.0094 | 0.8623 | - |
2.9992 | 7900 | 0.0076 | 0.0094 | 0.8658 | - |
3.0372 | 8000 | 0.005 | 0.0091 | 0.8673 | - |
3.0752 | 8100 | 0.005 | 0.0088 | 0.8688 | - |
3.1131 | 8200 | 0.0051 | 0.0088 | 0.8705 | - |
3.1511 | 8300 | 0.0052 | 0.0089 | 0.8701 | - |
3.1891 | 8400 | 0.0047 | 0.0088 | 0.8711 | - |
3.2270 | 8500 | 0.0046 | 0.0086 | 0.8723 | - |
3.2650 | 8600 | 0.0051 | 0.0086 | 0.8733 | - |
3.3030 | 8700 | 0.0053 | 0.0088 | 0.8736 | - |
3.3409 | 8800 | 0.0049 | 0.0086 | 0.8733 | - |
3.3789 | 8900 | 0.0051 | 0.0087 | 0.8721 | - |
3.4169 | 9000 | 0.0051 | 0.0086 | 0.8716 | - |
3.4548 | 9100 | 0.005 | 0.0087 | 0.8717 | - |
3.4928 | 9200 | 0.0055 | 0.0088 | 0.8709 | - |
3.5308 | 9300 | 0.0046 | 0.0085 | 0.8738 | - |
3.5687 | 9400 | 0.0052 | 0.0085 | 0.8738 | - |
3.6067 | 9500 | 0.0052 | 0.0089 | 0.8706 | - |
3.6446 | 9600 | 0.0049 | 0.0085 | 0.8722 | - |
3.6826 | 9700 | 0.0051 | 0.0088 | 0.8720 | - |
3.7206 | 9800 | 0.0046 | 0.0088 | 0.8721 | - |
3.7585 | 9900 | 0.0051 | 0.0083 | 0.8757 | - |
3.7965 | 10000 | 0.005 | 0.0084 | 0.8744 | - |
3.8345 | 10100 | 0.005 | 0.0084 | 0.8754 | - |
3.8724 | 10200 | 0.0054 | 0.0087 | 0.8737 | - |
3.9104 | 10300 | 0.0054 | 0.0083 | 0.8757 | - |
3.9484 | 10400 | 0.005 | 0.0082 | 0.8754 | - |
3.9863 | 10500 | 0.0049 | 0.0083 | 0.8746 | - |
4.0243 | 10600 | 0.0041 | 0.0081 | 0.8757 | - |
4.0623 | 10700 | 0.0034 | 0.0082 | 0.8760 | - |
4.1002 | 10800 | 0.003 | 0.0083 | 0.8751 | - |
4.1382 | 10900 | 0.0033 | 0.0082 | 0.8770 | - |
4.1762 | 11000 | 0.0034 | 0.0083 | 0.8772 | - |
4.2141 | 11100 | 0.0033 | 0.0082 | 0.8773 | - |
4.2521 | 11200 | 0.0031 | 0.0082 | 0.8787 | - |
4.2901 | 11300 | 0.0033 | 0.0080 | 0.8805 | - |
4.3280 | 11400 | 0.0029 | 0.0082 | 0.8787 | - |
4.3660 | 11500 | 0.0035 | 0.0079 | 0.8796 | - |
4.4039 | 11600 | 0.0034 | 0.0079 | 0.8799 | - |
4.4419 | 11700 | 0.0032 | 0.0079 | 0.8794 | - |
4.4799 | 11800 | 0.0035 | 0.0079 | 0.8807 | - |
4.5178 | 11900 | 0.0035 | 0.0080 | 0.8798 | - |
4.5558 | 12000 | 0.0031 | 0.0079 | 0.8806 | - |
4.5938 | 12100 | 0.0034 | 0.0078 | 0.8812 | - |
4.6317 | 12200 | 0.0031 | 0.0078 | 0.8811 | - |
4.6697 | 12300 | 0.0032 | 0.0078 | 0.8813 | - |
4.7077 | 12400 | 0.0032 | 0.0079 | 0.8809 | - |
4.7456 | 12500 | 0.0032 | 0.0078 | 0.8815 | - |
4.7836 | 12600 | 0.0034 | 0.0077 | 0.8818 | - |
4.8216 | 12700 | 0.0035 | 0.0078 | 0.8817 | - |
4.8595 | 12800 | 0.0032 | 0.0078 | 0.8818 | - |
4.8975 | 12900 | 0.0032 | 0.0078 | 0.8818 | - |
4.9355 | 13000 | 0.0032 | 0.0078 | 0.8820 | - |
4.9734 | 13100 | 0.0031 | 0.0078 | 0.8819 | - |
5.0 | 13170 | - | - | - | 0.8747 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.2.2+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 30
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yahyaabd/allstat-semantic-search-mpnet-base-v2-sts
Dataset used to train yahyaabd/allstat-semantic-search-mpnet-base-v2-sts
Evaluation results
- Pearson Cosine on allstat semantic devself-reported0.971
- Spearman Cosine on allstat semantic devself-reported0.882
- Pearson Cosine on allstat semantic testself-reported0.967
- Spearman Cosine on allstat semantic testself-reported0.875