llama2-7b-dpo-lora-20231129-52

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6869
  • Rewards/chosen: 0.0289
  • Rewards/rejected: 0.0137
  • Rewards/accuracies: 0.5675
  • Rewards/margins: 0.0152
  • Logps/rejected: -288.6960
  • Logps/chosen: -359.9693
  • Logits/rejected: -0.3198
  • Logits/chosen: -0.1736

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 512
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6911 1.0 121 0.6918 0.0084 0.0083 0.5238 0.0001 -288.7494 -360.1742 -0.3206 -0.1740
0.6892 2.0 242 0.6888 0.0170 0.0139 0.4841 0.0032 -288.6942 -360.0880 -0.3202 -0.1740
0.6867 3.0 363 0.6869 0.0289 0.0137 0.5675 0.0152 -288.6960 -359.9693 -0.3198 -0.1736

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for xz-huggingface-0/llama2-7b-dpo-lora-20231129-52

Finetuned
(678)
this model