llama2-7b-dpo-lora-20231129-32

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6869
  • Rewards/chosen: 0.0290
  • Rewards/rejected: 0.0096
  • Rewards/accuracies: 0.5833
  • Rewards/margins: 0.0193
  • Logps/rejected: -288.6959
  • Logps/chosen: -359.9739
  • Logits/rejected: -0.3197
  • Logits/chosen: -0.1734

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 512
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6918 1.0 121 0.6911 0.0118 0.0027 0.5159 0.0091 -288.7652 -360.1456 -0.3204 -0.1740
0.6887 2.0 242 0.6886 0.0182 0.0065 0.5437 0.0118 -288.7276 -360.0812 -0.3203 -0.1741
0.6865 3.0 363 0.6869 0.0290 0.0096 0.5833 0.0193 -288.6959 -359.9739 -0.3197 -0.1734

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for xz-huggingface-0/llama2-7b-dpo-lora-20231129-32

Finetuned
(678)
this model