This model has been xMADified!
This repository contains google/gemma-2-9b-it
quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
Why should I use this model?
Accuracy: This xMADified model is the best quantized version of the
google/gemma-2-9b-it
model (8 GB only). See Table 1 below for model quality benchmarks.Memory-efficiency: The full-precision model is around 18.5 GB, while this xMADified model is only around 8 GB, making it feasible to run on a 12 GB GPU.
Fine-tuning: These models are fine-tunable over the same reduced (12 GB GPU) hardware in mere 3-clicks. Watch our product demo here
Table 1: xMAD vs. Hugging Quants
Model | MMLU | Arc Challenge | Arc Easy | LAMBADA Standard | LAMBADA OpenAI | PIQA | WinoGrande |
---|---|---|---|---|---|---|---|
xmadai/gemma-2-9b-it-xMADai-INT4 (this model) | 71.17 | 62.37 | 85.61 | 70.60 | 72.15 | 81.50 | 75.06 |
hugging-quants/gemma-2-9b-it-AWQ-INT4 | 71.04 | 61.77 | 85.14 | 69.16 | 70.68 | 80.41 | 75.06 |
How to Run Model
Loading the model checkpoint of this xMADified model requires around 8 GB of VRAM. Hence it can be efficiently run on a 12 GB GPU.
Package prerequisites:
- Run the following *commands to install the required packages.
pip install torch==2.4.0 # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
pip install transformers accelerate optimum
pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/[email protected]"
Sample Inference Code
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_id = "xmadai/gemma-2-9b-it-xMADai-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
model = AutoGPTQForCausalLM.from_quantized(
model_id,
device_map='auto',
trust_remote_code=True,
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=1024)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
Citation
If you found this model useful, please cite our research paper.
@article{zhang2024leanquant,
title={LeanQuant: Accurate and Scalable Large Language Model Quantization with Loss-error-aware Grid},
author={Zhang, Tianyi and Shrivastava, Anshumali},
journal={arXiv preprint arXiv:2407.10032},
year={2024},
url={https://arxiv.org/abs/2407.10032},
}
Contact Us
For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.
- Downloads last month
- 10