This model has been xMADified!
This repository contains meta-llama/Llama-3.2-3B-Instruct
quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
Why should I use this model?
Accuracy: This xMADified model is the best quantized version of the
meta-llama/Llama-3.2-3B-Instruct
model. We are on par with the original (fp16) model (see Table 1 below).Memory-efficiency: This xMADified model (3 GB) is >50% less memory than the full-precision model (6.5 GB). You can run this on any laptop GPU.
Fine-tuning: These models are fine-tunable over the same reduced (3 GB) hardware in mere 3-clicks. Watch our product demo here
Table 1: xMAD vs. Meta
MMLU | Arc Challenge | Arc Easy | LAMBADA Standard | LAMBADA OpenAI | PIQA | Winogrande | HellaSwag | |
---|---|---|---|---|---|---|---|---|
xmadai/Llama-3.2-3B-Instruct-xMADai-INT4 | 58.60 | 39.93 | 72.10 | 53.77 | 62.49 | 74.27 | 63.69 | 51.28 |
meta-llama/Llama-3.2-3B-Instruct | 60.48 | 43.69 | 74.24 | 57.75 | 66.54 | 75.73 | 67.40 | 52.20 |
How to Run Model
Loading the model checkpoint of this xMADified model requires less than 3 GiB of VRAM. Hence it can be efficiently run on most laptop GPUs.
Package prerequisites: Run the following commands to install the required packages.
pip install torch==2.4.0 # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
pip install transformers accelerate optimum
pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/[email protected]"
Sample Inference Code
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_id = "xmadai/Llama-3.2-3B-Instruct-xMADai-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
model = AutoGPTQForCausalLM.from_quantized(
model_id,
device_map='auto',
trust_remote_code=True,
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.
- Downloads last month
- 49
Model tree for xmadai/Llama-3.2-3B-Instruct-xMADai-INT4
Base model
meta-llama/Llama-3.2-3B-Instruct