metadata
license: apache-2.0
language:
- zh
- en
pipeline_tag: image-to-text
tags:
- ocr
- captcha
介绍(Introduction)
验证码识别模型(ocr-captcha)专门识别常见验证码的模型,训练模型有2个:
1.small:训练数据大小为700MB,约8.4万张验证码图片,训练轮次27轮,最终的精度将近100%,推荐下载这个模型;
2.big:训练数据大小为11G,约135万个验证码图片,训练轮次1轮,最终的精度将近93.95%(由于资源问题,无法训练太久);
数据分布
1.类型:1. 纯数字型;2. 数字+字母型;3.纯字母型(大小写)
2.长度:4位、5位、6位
数据微调
1.基座模型:基座模型参考达摩院发布的读光-文字识别-行识别模型-中英-通用领域
2.具体微调参考以上链接
模型体验链接
modelscope:验证码识别模型(ocr-captcha)
单独模型链接(modelscope)
快速使用(Quickstart)
代码提供web网页版:myself_train_model.py
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import gradio as gr
import os
class xiaolv_ocr_model():
def __init__(self):
model_small = r"./output_small"
model_big = r"./output_big"
self.ocr_recognition_small = pipeline(Tasks.ocr_recognition, model=model_small)
self.ocr_recognition1_big = pipeline(Tasks.ocr_recognition, model=model_big)
def run(self,pict_path,moshi = "small", context=[]):
pict_path = pict_path.name
context = [pict_path]
if moshi == "small":
result = self.ocr_recognition_small(pict_path)
else:
result = self.ocr_recognition1_big(pict_path)
context += [str(result['text'][0])]
responses = [(u, b) for u, b in zip(context[::2], context[1::2])]
print(f"识别的结果为:{result}")
os.remove(pict_path)
return responses,context
if __name__ == "__main__":
pict_path = r"C:\Users\admin\Desktop\图片识别测试\企业微信截图_16895911221007.png"
ocr_model = xiaolv_ocr_model()
# ocr_model.run(pict_path)
联系我们(Contact Us)
如果你想给我们的研发团队和产品团队留言,请通过邮件([email protected])联系我们。