|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:10053 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: answerdotai/ModernBERT-base |
|
widget: |
|
- source_sentence: Fluorescence quenching of tryptophan residues |
|
sentences: |
|
- 'Fluorescence of buried tyrosine residues in proteins. ' |
|
- 'A fluorescence quenching study of tryptophanyl residues of (Ca2+ + Mg2+)-ATPase |
|
from sarcoplasmic reticulum. ' |
|
- 'Some hormonal influences on the acetylation of sulfanilamide in vivo. ' |
|
- source_sentence: Human migration to the Americas |
|
sentences: |
|
- 'Homo sapiens in the Americas. Overview of the earliest human expansion in the |
|
New World. ' |
|
- 'Profiles of College Drinkers Defined by Alcohol Behaviors at the Week Level: |
|
Replication Across Semesters and Prospective Associations With Hazardous Drinking |
|
and Dependence-Related Symptoms. ' |
|
- 'Human migration. ' |
|
- source_sentence: Human Mobility Prediction |
|
sentences: |
|
- 'Human mobility prediction from region functions with taxi trajectories. ' |
|
- 'Understanding Human Mobility from Twitter. ' |
|
- 'Ovarian cancer gene therapy using HPV-16 pseudovirion carrying the HSV-tk gene. ' |
|
- source_sentence: Nevirapine Resistance |
|
sentences: |
|
- 'Nevirapine toxicity. ' |
|
- 'Recognizing rhenium. ' |
|
- 'Update on nevirapine: quest for a niche. ' |
|
- source_sentence: EHL tendon reconstruction |
|
sentences: |
|
- 'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two |
|
Case Reports. ' |
|
- 'Flexor tendon reconstruction. ' |
|
- 'Noble gases and neuroprotection: summary of current evidence. ' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
model-index: |
|
- name: SentenceTransformer based on answerdotai/ModernBERT-base |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: triplet dev |
|
type: triplet-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.887 |
|
name: Cosine Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on answerdotai/ModernBERT-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 1e8d43065c90b6370237c1474ba1445048b02898 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- json |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'EHL tendon reconstruction', |
|
'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two Case Reports. ', |
|
'Flexor tendon reconstruction. ', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
|
|
* Dataset: `triplet-dev` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| **cosine_accuracy** | **0.887** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### json |
|
|
|
* Dataset: json |
|
* Size: 10,053 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 8.86 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 21.84 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.65 tokens</li><li>max: 50 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------| |
|
| <code>COM-induced secretome changes in U937 monocytes</code> | <code>Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. </code> | <code>Monocytes. </code> | |
|
| <code>Metamaterials</code> | <code>Sound attenuation optimization using metaporous materials tuned on exceptional points. </code> | <code>Metamaterials: A cat's eye for all directions. </code> | |
|
| <code>Pediatric Parasitology</code> | <code>Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province. </code> | <code>[DIALOGUE ON PEDIATRIC PARASITOLOGY]. </code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `learning_rate`: 0.0002 |
|
- `num_train_epochs`: 2 |
|
- `lr_scheduler_type`: cosine_with_restarts |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 0.0002 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 2 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine_with_restarts |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | triplet-dev_cosine_accuracy | |
|
|:------:|:----:|:-------------:|:---------------------------:| |
|
| 0 | 0 | - | 0.457 | |
|
| 0.0189 | 1 | 5.2934 | - | |
|
| 0.0377 | 2 | 5.2413 | - | |
|
| 0.0566 | 3 | 4.9969 | - | |
|
| 0.0755 | 4 | 4.5579 | - | |
|
| 0.0943 | 5 | 3.9145 | - | |
|
| 0.1132 | 6 | 3.3775 | - | |
|
| 0.1321 | 7 | 2.8787 | - | |
|
| 0.1509 | 8 | 3.0147 | - | |
|
| 0.1698 | 9 | 2.7166 | - | |
|
| 0.1887 | 10 | 2.7875 | - | |
|
| 0.2075 | 11 | 2.3848 | - | |
|
| 0.2264 | 12 | 2.1921 | - | |
|
| 0.2453 | 13 | 1.7009 | - | |
|
| 0.2642 | 14 | 1.7649 | - | |
|
| 0.2830 | 15 | 1.7948 | - | |
|
| 0.3019 | 16 | 1.5384 | - | |
|
| 0.3208 | 17 | 1.6039 | - | |
|
| 0.3396 | 18 | 1.3364 | - | |
|
| 0.3585 | 19 | 1.3852 | - | |
|
| 0.3774 | 20 | 1.2427 | - | |
|
| 0.3962 | 21 | 1.3216 | - | |
|
| 0.4151 | 22 | 1.4202 | - | |
|
| 0.4340 | 23 | 1.2754 | - | |
|
| 0.4528 | 24 | 1.281 | - | |
|
| 0.4717 | 25 | 1.1709 | 0.815 | |
|
| 0.4906 | 26 | 1.2363 | - | |
|
| 0.5094 | 27 | 1.2169 | - | |
|
| 0.5283 | 28 | 1.1495 | - | |
|
| 0.5472 | 29 | 1.0066 | - | |
|
| 0.5660 | 30 | 1.0478 | - | |
|
| 0.5849 | 31 | 1.1511 | - | |
|
| 0.6038 | 32 | 0.9992 | - | |
|
| 0.6226 | 33 | 1.095 | - | |
|
| 0.6415 | 34 | 1.1699 | - | |
|
| 0.6604 | 35 | 0.9866 | - | |
|
| 0.6792 | 36 | 1.1303 | - | |
|
| 0.6981 | 37 | 1.1126 | - | |
|
| 0.7170 | 38 | 0.889 | - | |
|
| 0.7358 | 39 | 1.0355 | - | |
|
| 0.7547 | 40 | 1.0129 | - | |
|
| 0.7736 | 41 | 1.118 | - | |
|
| 0.7925 | 42 | 0.8494 | - | |
|
| 0.8113 | 43 | 1.0829 | - | |
|
| 0.8302 | 44 | 0.8751 | - | |
|
| 0.8491 | 45 | 0.8115 | - | |
|
| 0.8679 | 46 | 0.8579 | - | |
|
| 0.8868 | 47 | 1.1111 | - | |
|
| 0.9057 | 48 | 0.9032 | - | |
|
| 0.9245 | 49 | 1.0394 | - | |
|
| 0.9434 | 50 | 0.9691 | 0.862 | |
|
| 0.9623 | 51 | 1.023 | - | |
|
| 0.9811 | 52 | 0.9465 | - | |
|
| 1.0 | 53 | 0.6713 | - | |
|
| 1.0189 | 54 | 0.9773 | - | |
|
| 1.0377 | 55 | 0.8693 | - | |
|
| 1.0566 | 56 | 0.7187 | - | |
|
| 1.0755 | 57 | 0.805 | - | |
|
| 1.0943 | 58 | 0.728 | - | |
|
| 1.1132 | 59 | 1.0967 | - | |
|
| 1.1321 | 60 | 0.7036 | - | |
|
| 1.1509 | 61 | 0.8213 | - | |
|
| 1.1698 | 62 | 0.57 | - | |
|
| 1.1887 | 63 | 0.7006 | - | |
|
| 1.2075 | 64 | 0.5091 | - | |
|
| 1.2264 | 65 | 0.5758 | - | |
|
| 1.2453 | 66 | 0.4484 | - | |
|
| 1.2642 | 67 | 0.397 | - | |
|
| 1.2830 | 68 | 0.6172 | - | |
|
| 1.3019 | 69 | 0.513 | - | |
|
| 1.3208 | 70 | 0.4447 | - | |
|
| 1.3396 | 71 | 0.3205 | - | |
|
| 1.3585 | 72 | 0.5881 | - | |
|
| 1.3774 | 73 | 0.2543 | - | |
|
| 1.3962 | 74 | 0.3648 | - | |
|
| 1.4151 | 75 | 0.4849 | 0.876 | |
|
| 1.4340 | 76 | 0.3455 | - | |
|
| 1.4528 | 77 | 0.3424 | - | |
|
| 1.4717 | 78 | 0.224 | - | |
|
| 1.4906 | 79 | 0.18 | - | |
|
| 1.5094 | 80 | 0.2255 | - | |
|
| 1.5283 | 81 | 0.3024 | - | |
|
| 1.5472 | 82 | 0.1835 | - | |
|
| 1.5660 | 83 | 0.1946 | - | |
|
| 1.5849 | 84 | 0.1958 | - | |
|
| 1.6038 | 85 | 0.1568 | - | |
|
| 1.6226 | 86 | 0.1626 | - | |
|
| 1.6415 | 87 | 0.1774 | - | |
|
| 1.6604 | 88 | 0.1934 | - | |
|
| 1.6792 | 89 | 0.2426 | - | |
|
| 1.6981 | 90 | 0.2958 | - | |
|
| 1.7170 | 91 | 0.1606 | - | |
|
| 1.7358 | 92 | 0.2281 | - | |
|
| 1.7547 | 93 | 0.1786 | - | |
|
| 1.7736 | 94 | 0.2241 | - | |
|
| 1.7925 | 95 | 0.1909 | - | |
|
| 1.8113 | 96 | 0.236 | - | |
|
| 1.8302 | 97 | 0.1332 | - | |
|
| 1.8491 | 98 | 0.1247 | - | |
|
| 1.8679 | 99 | 0.156 | - | |
|
| 1.8868 | 100 | 0.2152 | 0.889 | |
|
| 1.9057 | 101 | 0.1549 | - | |
|
| 1.9245 | 102 | 0.2226 | - | |
|
| 1.9434 | 103 | 0.21 | - | |
|
| 1.9623 | 104 | 0.2139 | - | |
|
| 1.9811 | 105 | 0.1864 | - | |
|
| 2.0 | 106 | 0.0719 | 0.887 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.12.3 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.48.0.dev0 |
|
- PyTorch: 2.5.1 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |