See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/SmolLM-135M
batch_size: 8
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
- 2144ebae5d455e44_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2144ebae5d455e44_train_data.json
type:
field_instruction: prompt
field_output: original_response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
early_stopping_patience: 3
eval_steps: 50
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/ecf2f7d5-ff6e-46d0-baf3-23d54fa38ba2
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 256
lora_dropout: 0.1
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 1
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 50
sequence_len: 2048
tokenizer_type: GPT2TokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true
ecf2f7d5-ff6e-46d0-baf3-23d54fa38ba2
This model is a fine-tuned version of unsloth/SmolLM-135M on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4037
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 517
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0012 | 1 | 1.6175 |
1.6014 | 0.0603 | 50 | 1.5669 |
1.417 | 0.1206 | 100 | 1.5081 |
1.4265 | 0.1809 | 150 | 1.4801 |
1.4553 | 0.2413 | 200 | 1.4600 |
1.3311 | 0.3016 | 250 | 1.4486 |
1.3884 | 0.3619 | 300 | 1.4392 |
1.3114 | 0.4222 | 350 | 1.4347 |
1.4563 | 0.4825 | 400 | 1.4244 |
1.3847 | 0.5428 | 450 | 1.4214 |
1.4362 | 0.6031 | 500 | 1.4189 |
1.4121 | 0.6634 | 550 | 1.4157 |
1.286 | 0.7238 | 600 | 1.4085 |
1.3552 | 0.7841 | 650 | 1.4072 |
1.3352 | 0.8444 | 700 | 1.4045 |
1.3053 | 0.9047 | 750 | 1.4026 |
1.3281 | 0.9650 | 800 | 1.3991 |
1.2612 | 1.0253 | 850 | 1.3985 |
1.3015 | 1.0856 | 900 | 1.3953 |
1.2802 | 1.1460 | 950 | 1.3945 |
1.3213 | 1.2063 | 1000 | 1.3938 |
1.2842 | 1.2666 | 1050 | 1.3919 |
1.2355 | 1.3269 | 1100 | 1.3920 |
1.3006 | 1.3872 | 1150 | 1.3937 |
1.2391 | 1.4475 | 1200 | 1.4037 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.