Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6
batch_size: 8
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
  - 11bfaf21b106be7f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/11bfaf21b106be7f_train_data.json
  type:
    field_input: project_and_commit_id
    field_instruction: source
    field_output: target
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
early_stopping_patience: 3
eval_steps: 50
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/ad641a5b-ef11-4278-80e4-9119f53c47f4
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 256
lora_dropout: 0.1
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 1
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 50
sequence_len: 2048
tokenizer_type: LlamaTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true

ad641a5b-ef11-4278-80e4-9119f53c47f4

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 589
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0011 1 2.0060
1.2664 0.0530 50 1.2713
0.9659 0.1060 100 0.9642
0.7596 0.1591 150 0.8311
0.7092 0.2121 200 0.7583
0.6691 0.2651 250 0.6944
0.65 0.3181 300 0.6577
0.6149 0.3712 350 0.6268
0.5929 0.4242 400 0.5945
0.5319 0.4772 450 0.5820
0.5136 0.5302 500 0.5576
0.5258 0.5832 550 0.5367
0.4476 0.6363 600 0.5141
0.5018 0.6893 650 0.4943
0.4851 0.7423 700 0.4861
0.41 0.7953 750 0.4693
0.4625 0.8484 800 0.4552
0.4909 0.9014 850 0.4421
0.3885 0.9544 900 0.4196
0.3408 1.0074 950 0.4111
0.2804 1.0604 1000 0.4020
0.3503 1.1135 1050 0.3875
0.291 1.1665 1100 0.3958
0.3025 1.2195 1150 0.3849
0.2749 1.2725 1200 0.3729
0.3222 1.3256 1250 0.3631
0.2895 1.3786 1300 0.3570
0.2994 1.4316 1350 0.3470
0.3055 1.4846 1400 0.3431
0.2252 1.5376 1450 0.3351
0.2816 1.5907 1500 0.3214
0.3065 1.6437 1550 0.3163
0.2727 1.6967 1600 0.3158
0.2673 1.7497 1650 0.3123
0.276 1.8028 1700 0.3090
0.217 1.8558 1750 0.3021
0.2712 1.9088 1800 0.2950
0.2175 1.9618 1850 0.2927
0.1561 2.0148 1900 0.2911
0.1557 2.0679 1950 0.2773
0.1404 2.1209 2000 0.2725
0.1386 2.1739 2050 0.2696
0.1224 2.2269 2100 0.2780
0.1535 2.2800 2150 0.2713
0.1494 2.3330 2200 0.2704

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for willtensora/ad641a5b-ef11-4278-80e4-9119f53c47f4

Adapter
(142)
this model