See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6
batch_size: 8
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
- 11bfaf21b106be7f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/11bfaf21b106be7f_train_data.json
type:
field_input: project_and_commit_id
field_instruction: source
field_output: target
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
early_stopping_patience: 3
eval_steps: 50
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/ad641a5b-ef11-4278-80e4-9119f53c47f4
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 256
lora_dropout: 0.1
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 1
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 50
sequence_len: 2048
tokenizer_type: LlamaTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true
ad641a5b-ef11-4278-80e4-9119f53c47f4
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.6 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2704
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 589
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0011 | 1 | 2.0060 |
1.2664 | 0.0530 | 50 | 1.2713 |
0.9659 | 0.1060 | 100 | 0.9642 |
0.7596 | 0.1591 | 150 | 0.8311 |
0.7092 | 0.2121 | 200 | 0.7583 |
0.6691 | 0.2651 | 250 | 0.6944 |
0.65 | 0.3181 | 300 | 0.6577 |
0.6149 | 0.3712 | 350 | 0.6268 |
0.5929 | 0.4242 | 400 | 0.5945 |
0.5319 | 0.4772 | 450 | 0.5820 |
0.5136 | 0.5302 | 500 | 0.5576 |
0.5258 | 0.5832 | 550 | 0.5367 |
0.4476 | 0.6363 | 600 | 0.5141 |
0.5018 | 0.6893 | 650 | 0.4943 |
0.4851 | 0.7423 | 700 | 0.4861 |
0.41 | 0.7953 | 750 | 0.4693 |
0.4625 | 0.8484 | 800 | 0.4552 |
0.4909 | 0.9014 | 850 | 0.4421 |
0.3885 | 0.9544 | 900 | 0.4196 |
0.3408 | 1.0074 | 950 | 0.4111 |
0.2804 | 1.0604 | 1000 | 0.4020 |
0.3503 | 1.1135 | 1050 | 0.3875 |
0.291 | 1.1665 | 1100 | 0.3958 |
0.3025 | 1.2195 | 1150 | 0.3849 |
0.2749 | 1.2725 | 1200 | 0.3729 |
0.3222 | 1.3256 | 1250 | 0.3631 |
0.2895 | 1.3786 | 1300 | 0.3570 |
0.2994 | 1.4316 | 1350 | 0.3470 |
0.3055 | 1.4846 | 1400 | 0.3431 |
0.2252 | 1.5376 | 1450 | 0.3351 |
0.2816 | 1.5907 | 1500 | 0.3214 |
0.3065 | 1.6437 | 1550 | 0.3163 |
0.2727 | 1.6967 | 1600 | 0.3158 |
0.2673 | 1.7497 | 1650 | 0.3123 |
0.276 | 1.8028 | 1700 | 0.3090 |
0.217 | 1.8558 | 1750 | 0.3021 |
0.2712 | 1.9088 | 1800 | 0.2950 |
0.2175 | 1.9618 | 1850 | 0.2927 |
0.1561 | 2.0148 | 1900 | 0.2911 |
0.1557 | 2.0679 | 1950 | 0.2773 |
0.1404 | 2.1209 | 2000 | 0.2725 |
0.1386 | 2.1739 | 2050 | 0.2696 |
0.1224 | 2.2269 | 2100 | 0.2780 |
0.1535 | 2.2800 | 2150 | 0.2713 |
0.1494 | 2.3330 | 2200 | 0.2704 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for willtensora/ad641a5b-ef11-4278-80e4-9119f53c47f4
Base model
TinyLlama/TinyLlama-1.1B-Chat-v0.6