Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-0.5B
batch_size: 8
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
  - 44664facd5408a4c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/44664facd5408a4c_train_data.json
  type:
    field_input: choices
    field_instruction: full_prompt
    field_output: example
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
evals_per_epoch: 1
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/a7f83208-aa47-4ecd-80e6-f21bda70bb90
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 256
lora_dropout: 0.1
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 1
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
saves_per_epoch: 2
sequence_len: 2048
tokenizer_type: Qwen2TokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true

a7f83208-aa47-4ecd-80e6-f21bda70bb90

This model is a fine-tuned version of Qwen/Qwen2.5-0.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 24
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.025 1 0.9385
0.0292 1.0 40 0.0043
0.0148 2.0 80 0.0332
0.1015 3.0 120 0.0044
0.0002 4.0 160 0.0001
0.0 5.0 200 0.0000
0.0 6.0 240 0.0000
0.0 7.0 280 0.0000
0.0 8.0 320 0.0000
0.0 9.0 360 0.0000
0.0 10.0 400 0.0000
0.0 11.0 440 0.0000
0.0 12.0 480 0.0000
0.0 13.0 520 0.0000
0.0 14.0 560 0.0000
0.0 15.0 600 0.0000
0.0 16.0 640 0.0000
0.0 17.0 680 0.0000
0.0 18.0 720 0.0000
0.0 19.0 760 0.0000
0.0 20.0 800 0.0000
0.0 21.0 840 0.0000
0.0 22.0 880 0.0000
0.0 23.0 920 0.0000
0.0 24.0 960 0.0000
0.0 25.0 1000 0.0000
0.0 26.0 1040 0.0000
0.0 27.0 1080 0.0000
0.0 28.0 1120 0.0000
0.0 29.0 1160 0.0000
0.0 30.0 1200 0.0000
0.0 31.0 1240 0.0000
0.0 32.0 1280 0.0000
0.0 33.0 1320 0.0000
0.0 34.0 1360 0.0000
0.0 35.0 1400 0.0000
0.0 36.0 1440 0.0000
0.0 37.0 1480 0.0000
0.0 38.0 1520 0.0000
0.0 39.0 1560 0.0000
0.0 40.0 1600 0.0000
0.0 41.0 1640 0.0000
0.0 42.0 1680 0.0000
0.0 43.0 1720 0.0000
0.0 44.0 1760 0.0000
0.0 45.0 1800 0.0000
0.0 46.0 1840 0.0000
0.0 47.0 1880 0.0000
0.0 48.0 1920 0.0000
0.0 49.0 1960 0.0000
0.0 50.0 2000 0.0000
0.0 51.0 2040 0.0000
0.0 52.0 2080 0.0000
0.0 53.0 2120 0.0000
0.0 54.0 2160 0.0000
0.0 55.0 2200 0.0000
0.0 56.0 2240 0.0000
0.0 57.0 2280 0.0000
0.0 58.0 2320 0.0000
0.0 59.0 2360 0.0000
0.0 60.0 2400 0.0000
0.0 61.0 2440 0.0000
0.0 62.0 2480 0.0000
0.0 63.0 2520 0.0000
0.0 64.0 2560 0.0000
0.0 65.0 2600 0.0000
0.0 66.0 2640 0.0000
0.0 67.0 2680 0.0000
0.0 68.0 2720 0.0000
0.0 69.0 2760 0.0000
0.0 70.0 2800 0.0000
0.0 71.0 2840 0.0000
0.0 72.0 2880 0.0000
0.0 73.0 2920 0.0000
0.0 74.0 2960 0.0000
0.0 75.0 3000 0.0000
0.0 76.0 3040 0.0000
0.0 77.0 3080 0.0000
0.0 78.0 3120 0.0000
0.0 79.0 3160 0.0000
0.0 80.0 3200 0.0000
0.0 81.0 3240 0.0000
0.0 82.0 3280 0.0000
0.0 83.0 3320 0.0000
0.0 84.0 3360 0.0000
0.0 85.0 3400 0.0000
0.0 86.0 3440 0.0000
0.0 87.0 3480 0.0000
0.0 88.0 3520 0.0000
0.0 89.0 3560 0.0000
0.0 90.0 3600 0.0000
0.0 91.0 3640 0.0000
0.0 92.0 3680 0.0000
0.0 93.0 3720 0.0000
0.0 94.0 3760 0.0000
0.0 95.0 3800 0.0000
0.0 96.0 3840 0.0000
0.0 97.0 3880 0.0000
0.0 98.0 3920 0.0000
0.0 99.0 3960 0.0000
0.0 100.0 4000 0.0000

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for willtensora/a7f83208-aa47-4ecd-80e6-f21bda70bb90

Base model

Qwen/Qwen2.5-0.5B
Adapter
(180)
this model