See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2-1.5B-Instruct
batch_size: 8
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
- 19637e66dc3ec99a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/19637e66dc3ec99a_train_data.json
type:
field_instruction: drugName
field_output: review
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
early_stopping_patience: 3
eval_steps: 50
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/0eda4152-e58c-4e24-b30e-71e456fb3b24
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 256
lora_dropout: 0.1
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 1
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 50
sequence_len: 2048
tokenizer_type: Qwen2TokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true
0eda4152-e58c-4e24-b30e-71e456fb3b24
This model is a fine-tuned version of Qwen/Qwen2-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4073
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15107
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0000 | 1 | 3.1066 |
3.0737 | 0.0021 | 50 | 3.0943 |
3.2193 | 0.0041 | 100 | 3.0057 |
2.9091 | 0.0062 | 150 | 2.8280 |
2.8518 | 0.0083 | 200 | 2.6914 |
2.7049 | 0.0103 | 250 | 2.5964 |
2.5077 | 0.0124 | 300 | 2.5624 |
2.5767 | 0.0145 | 350 | 2.5434 |
2.4882 | 0.0165 | 400 | 2.5289 |
2.5446 | 0.0186 | 450 | 2.5212 |
2.5746 | 0.0207 | 500 | 2.5130 |
2.552 | 0.0228 | 550 | 2.5067 |
2.5758 | 0.0248 | 600 | 2.5002 |
2.5321 | 0.0269 | 650 | 2.4943 |
2.5634 | 0.0290 | 700 | 2.4918 |
2.4308 | 0.0310 | 750 | 2.4876 |
2.5713 | 0.0331 | 800 | 2.4831 |
2.3993 | 0.0352 | 850 | 2.4820 |
2.4609 | 0.0372 | 900 | 2.4766 |
2.4981 | 0.0393 | 950 | 2.4738 |
2.5594 | 0.0414 | 1000 | 2.4705 |
2.5697 | 0.0434 | 1050 | 2.4702 |
2.5192 | 0.0455 | 1100 | 2.4677 |
2.5156 | 0.0476 | 1150 | 2.4649 |
2.5819 | 0.0496 | 1200 | 2.4638 |
2.5288 | 0.0517 | 1250 | 2.4595 |
2.4565 | 0.0538 | 1300 | 2.4585 |
2.4487 | 0.0558 | 1350 | 2.4557 |
2.5059 | 0.0579 | 1400 | 2.4531 |
2.4266 | 0.0600 | 1450 | 2.4537 |
2.4951 | 0.0621 | 1500 | 2.4544 |
2.4606 | 0.0641 | 1550 | 2.4467 |
2.3836 | 0.0662 | 1600 | 2.4453 |
2.4641 | 0.0683 | 1650 | 2.4461 |
2.4473 | 0.0703 | 1700 | 2.4432 |
2.3924 | 0.0724 | 1750 | 2.4418 |
2.4956 | 0.0745 | 1800 | 2.4415 |
2.5065 | 0.0765 | 1850 | 2.4377 |
2.57 | 0.0786 | 1900 | 2.4399 |
2.4057 | 0.0807 | 1950 | 2.4357 |
2.4555 | 0.0827 | 2000 | 2.4350 |
2.5578 | 0.0848 | 2050 | 2.4339 |
2.4314 | 0.0869 | 2100 | 2.4340 |
2.4294 | 0.0889 | 2150 | 2.4317 |
2.4092 | 0.0910 | 2200 | 2.4324 |
2.5031 | 0.0931 | 2250 | 2.4289 |
2.3989 | 0.0952 | 2300 | 2.4276 |
2.4823 | 0.0972 | 2350 | 2.4259 |
2.4884 | 0.0993 | 2400 | 2.4242 |
2.3923 | 0.1014 | 2450 | 2.4255 |
2.4107 | 0.1034 | 2500 | 2.4272 |
2.4565 | 0.1055 | 2550 | 2.4235 |
2.3695 | 0.1076 | 2600 | 2.4228 |
2.4399 | 0.1096 | 2650 | 2.4229 |
2.4686 | 0.1117 | 2700 | 2.4197 |
2.4199 | 0.1138 | 2750 | 2.4173 |
2.3615 | 0.1158 | 2800 | 2.4185 |
2.4635 | 0.1179 | 2850 | 2.4190 |
2.4492 | 0.1200 | 2900 | 2.4157 |
2.4444 | 0.1220 | 2950 | 2.4166 |
2.4057 | 0.1241 | 3000 | 2.4142 |
2.3822 | 0.1262 | 3050 | 2.4137 |
2.3831 | 0.1282 | 3100 | 2.4122 |
2.376 | 0.1303 | 3150 | 2.4140 |
2.4278 | 0.1324 | 3200 | 2.4109 |
2.3976 | 0.1345 | 3250 | 2.4121 |
2.3883 | 0.1365 | 3300 | 2.4099 |
2.4337 | 0.1386 | 3350 | 2.4095 |
2.3364 | 0.1407 | 3400 | 2.4066 |
2.3768 | 0.1427 | 3450 | 2.4065 |
2.4395 | 0.1448 | 3500 | 2.4081 |
2.2957 | 0.1469 | 3550 | 2.4069 |
2.396 | 0.1489 | 3600 | 2.4058 |
2.4117 | 0.1510 | 3650 | 2.4072 |
2.3691 | 0.1531 | 3700 | 2.4091 |
2.3721 | 0.1551 | 3750 | 2.4073 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for willtensora/0eda4152-e58c-4e24-b30e-71e456fb3b24
Base model
Qwen/Qwen2-1.5B-Instruct