metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: w2v-bert-2.0-arabic-colab-CV16.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 0.9174774774774774
w2v-bert-2.0-arabic-colab-CV16.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2104
- Wer: 0.9175
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.2194 | 1.92 | 300 | 0.2943 | 0.2984 |
0.9727 | 3.83 | 600 | 1.2104 | 0.9175 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2