File size: 3,682 Bytes
7b5c06e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
language:
- en
license: apache-2.0
library_name: atommic
datasets:
- CC359
thumbnail: null
tags:
- image-reconstruction
- UNet
- ATOMMIC
- pytorch
model-index:
- name: REC_UNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
  results: []

---


## Model Overview

UNet for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.


## ATOMMIC: Training

To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
```
pip install atommic['all']
```

## How to Use this Model

The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).

### Automatically instantiate the model

```base
pretrained: true
checkpoint: https://huggingface.co/wdika/REC_UNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_UNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
mode: test
```

### Usage

You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.


## Model Architecture
```base
model:
  model_name: UNet
  channels: 64
  pooling_layers: 4
  in_channels: 2
  out_channels: 2
  padding_size: 11
  dropout: 0.0
  normalize: true
  norm_groups: 2
  dimensionality: 2
  reconstruction_loss:
    l1: 0.1
    ssim: 0.9
  estimate_coil_sensitivity_maps_with_nn: true
```

## Training
```base
  optim:
    name: adamw
    lr: 1e-4
    betas:
      - 0.9
      - 0.999
    weight_decay: 0.0
    sched:
        name: CosineAnnealing
        min_lr: 0.0
        last_epoch: -1
        warmup_ratio: 0.1

trainer:
  strategy: ddp_find_unused_parameters_false
  accelerator: gpu
  devices: 1
  num_nodes: 1
  max_epochs: 20
  precision: 16-mixed
  enable_checkpointing: false
  logger: false
  log_every_n_steps: 50
  check_val_every_n_epoch: -1
  max_steps: -1
```

## Performance

To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.

Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.

Results
-------

Evaluation against RSS targets
------------------------------
5x: MSE = 0.001429 +/- 0.001373 NMSE = 0.02208 +/- 0.02319 PSNR = 28.85 +/- 4.169 SSIM = 0.8487 +/- 0.07037

10x: MSE = 0.002108 +/- 0.002 NMSE = 0.03273 +/- 0.03417 PSNR = 27.2 +/- 4.197 SSIM = 0.8095 +/- 0.09149


## Limitations

This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.


## References

[1] [ATOMMIC](https://github.com/wdika/atommic)

[2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186